
Published in: Proceedings, Second International Workshop on Object Orientation in Operating Systems, Dourdan,
France, ed L.-F. Cabrera and E. Jul, IEEE, pp. 81-86, 1992.

Grasshopper - A Persistent Operating System
for Conventional Hardware

†Alan Dearle, *Rex di Bona, *James Farrow, *Frans Henskens,
*Anders Lindström, *John Rosenberg, †Francis Vaughan

†Department of Computer Science
University of Adelaide
S.A., 5001, Australia
{al,francis}@cs.adelaide.edu.au

*Department of Computer Science
University of Sydney
N.S.W., 2006, Australia
{rex,matty,frans,anders,johnr}@cs.su.oz.au

Abstract
This paper describes Grasshopper, an operating

system designed to provide generic mechanisms capable
of being tailored to support a wide range of persistence
paradigms. A constraint placed on this design is that the
system must be implementable on conventional
architectures which support paged virtual memory.

In this paper the basic system abstractions relating to
addressing environments, processes, and protection are
described. It is shown that these provide explicit support
for distributed persistent objects and processes, stability,
and access control. At the same time the system provides
the flexibility to allow user implementation of alternate
object management techniques.

1. Introduction
Most persistent systems developed to date have been

constructed above conventional operating systems. The
fact that these operating systems do not provide an ideal
platform for such construction is not surprising since
support for the principles of orthogonal persistence was
not among their design goals. In [21], for example,
Tanenbaum lists the four major components of an
operating system as being memory management, file
system, input-output and process management. In
persistent systems the functionality of the file system and
memory management is replaced by the persistent store.
Many conventional operating systems extend the file
abstraction to encompass input and output, an approach
which is obviously inappropriate for persistent systems.
Some persistent systems require that the state of a
process persists. This is not easily supported using
conventional operating systems.

It is to be expected that an operating system designed
to support persistence will have a different structure from
a conventional operating system and will provide a
different set of facilities. The principal requirements of
such an operating system may be summarised as follows
[7]:

i. Support for persistent objects as the basic
abstraction: Persistent objects consist of data
and relationships with other persistent objects.
The system must therefore provide a
mechanism for supporting the creation and
maintenance of these objects and
relationships. This mechanism should be
based upon a uniform addressing scheme used
by all processes to access objects; that is all
processes share a single logical address space.

ii. Stability and resilience for objects: The
system must reliably manage the transition
between long and short term memory
transparently to the programmer.

iii. Integration of processes into the object space:
Process state should itself be contained within
persistent objects. The importance of this is
that processes themselves become persistent
and resilient.

iv. Control over access to objects: Although the
persistent store is uniform, there is still a
requirement for restricted access to objects for
the same reasons that file systems contain
access control mechanisms. Any operating
system supporting persistence must therefore
provide some protection mechanism.

We term an operating system that provides these
facilities a persistent operating system.

In this position paper we describe the motivation for
and initial design of such an operating system. A major
constraint placed on the design is that it must be
implementable on conventional architectures (for
example Sun workstations and Intel 80386/486 based
PCs). This decision was made for the following reasons:

• The performance of these systems is
increasing dramatically every year due to the
massive investment of the hardware vendors.

• These architectures are highly available. It is
therefore easy to disseminate research results
by providing copies of the system to
interested parties.

• Should commercialisation become a
possibility in the future, a totally software
platform is easier to market than a solution
including specialised hardware.

The effects of this constraint are that:
• Addresses are typically a maximum of 32 bits

long.
• There is no hardware support for object

addressing and protection.
• The only memory management hardware

available is based on fixed sized pages.
In the next section we place the Grasshopper project

into perspective in relation to other projects and indicate
the major aims in terms of flexibility and
experimentation. This is followed by a description of the
computational model and the basic abstractions over
memory, computation and naming supported by the
system. We conclude with a discussion of the issues still
to be addressed.

2. Related work
Attempts to build persistent systems above

conventional operating systems have encountered
difficulties, caused in part by the fact that these operating
systems were not designed with persistence in mind. For
example, the developers of Napier88 [16] have
experienced unpredictable performance degradation
apparently caused by bottlenecks in Unix. In-depth
knowledge of the internal structure of the operating
system is required to make any substantial performance
improvements.

Even researchers using ‘open’ operating systems such
as Mach [1] have experienced difficulties brought about
by the inability to control certain operating system
functionality. For example, the distributed Napier group
[23] had problems with lack of control over page discard.

Other projects such as Monads [19] have taken the
opposite approach and have developed purpose-built
hardware and a new operating system which operates
above it. This approach shows much promise in that
appropriate architectures can be provided thus avoiding
the constraints mentioned above. However, there are
major disadvantages, such as the cost of development of
new hardware, the time this development takes, and the
inability to make the operating system and persistent
applications readily available to other research groups.

An intermediate approach is to develop a new
operating system with provides support for persistence,
but which operates on top of conventional hardware.
Clouds [6] and to a lesser extent (since persistence was
added later) Choices [3] are examples of such systems.
The major problem with existing systems which
implement this approach (in particular Clouds) is that
they force a narrow model of persistence on the
applications which run above them. This precludes their

use as a basis for experimentation with more general
persistence paradigms.

3. Aims and goals of this project
In this project we aim to design and implement an

operating system kernel which provides generic
mechanisms capable of being tailored to support a wide
variety of persistence paradigms,

In this sense Grasshopper has similar aims to the
micro-kernel projects [1, 4], but with a specific
orientation towards support for persistence.

4 The Basic abstractions
An operating system is largely responsible for the

control and management of two entities: objects, which
contain data and processes, the active elements which
manipulate these objects. One of the most important
considerations in the design of an operating system is the
model of interaction between these entities. There are
two principal models of computation which we call the
out-of-process and the in-process models.

The out-of-process model aligns processes with
objects. Communication between processes aligned with
different objects is achieved through the use of messages.
The in-process model provides for processes which move
between objects. Processes access objects by invoking
them. The invoke operation effectively causes a
procedure call to code within the object. By executing
this code the process may access other data stored within
the object. It is interesting to note that, whilst the out-of-
process model cannot be used to efficiently simulate any
other computational models, the in-process model is
more flexible. For instance, it can easily simulate the
out-of-process model by associating a message passing
process with every object. The in-process model can also
be used to implement other addressing paradigms, for
instance distributed memory [10].

Protection of data is more complex with the use of the
in-process model. When a process invokes an object its
addressing environment is defined by that object. Thus
the addressing environment of a process may change
throughout its life. As a result the host machine's
addressing environment must be changed, not only on
each process switch, but also on each invoke operation.
This is in contrast to the out-of-process model, in which
the addressing environment of a process is constant.
Whilst we prefer the flexibility inherent in adoption of
the in-process model for this project, we recognise that
provision of strong protection mechanisms is another
important consideration in developing our design.

Objects in the Grasshopper system are called
containers. Persistence of containers is by reachability,
that is a container persists whilst it is referenced by some
other persistent entity. Our concept of process is called a

locus. Loci move between containers in accordance with
the in-process model. Control over access to containers
is achieved through the use of capabilities [8]. A locus
must present a valid capability in order to invoke a
container.
4.1 Containers

Containers are persistent entities which abstract over
storage and thus provide the environment in which loci
execute. A container may consist entirely of its own
data, or may (recursively) have one or more regions of
other containers mapped onto parts of it. Information
about such mappings is maintained by the kernel.

A locus executing within a container accesses the data
stored in it using container addresses. The container
address of a word of data is its offset relative to the start
of the container in which it is accessed. Every container
is paged and may have an associated manager which is
responsible for:

• provision of the pages of data stored in the
container,

• implementation of a stability algorithm for the
container [2, 12, 13, 15, 18], and

• maintenance of coherence in the case of
distributed access to the container [9, 14, 17,
20].

Containers consisting entirely of mapped regions need
not have a manager.

Managers are ordinary programs which reside and
execute within their own containers. A manager is
invoked whenever the kernel detects a memory access
fault on an access to data stored in the container it
manages. It should be noted that the manager for a
mapped region is the manager for the container which
contains the region with no mappings. This is shown in

figure 1. In this figure, Container 1 has the shaded
region from Container 2 (which itself has no mappings)
mapped onto it. Access faults for the shaded pages are
handled by Manager 2, while those for the other (non-
shaded and unmapped) pages are handled by Manager 1.

The mappings described above are defined on a global
basis, and as such are visible to all loci executing in the
mapped container. Grasshopper also provides per locus
mappings. Per locus mappings are only visible to one
locus. This feature allows multiple loci to concurrently
map regions such as their individual stacks in the same
range of container addresses.

Whilst default managers are provided with the system,
experimentation is supported by allowing users to
develop their own managers. Since managers have full
control over the mapping between container addresses
and the backing store it is possible to provide a modified
view of the container data. For example, a manager
could implement large persistent addresses using a
pointer swizzling technique such as those described in [2,
5, 22, 24].

4.2 Loci
Loci are the active entities in the Grasshopper system.

Each locus must at any instant be executing within a
container, but may meander through the containers in
the store, moving from one container to the next by
invocation. It is possible for multiple loci to
simultaneously execute within the same container. The
invoke operation is in effect a procedure call to a well
known location in another container. The kernel
optionally maintains a history of invoke operations so
that a corresponding return may take place.

Store

Manager 1

Manager 2

Container 1

Container 2

Figure 1. Provision of Pages for Mapped Containers.

Support for persistent processes [11] is provided by
allowing the state of a locus to be captured within a
persistent object.

4.3 Protection
Access to any entity in the Grasshopper system is

obtained by the presentation of a key called a capability
[8]. The capabilities indicate the type of access permitted.
This varies depending on the kind of entity. For example,
access rights in a container capability include the right to
invoke the container, the right to map the container into a
another container, the right to map other containers into a
container, etc. Access rights in a locus capability include
the right to suspend the locus, the right to activate the
locus, the right to delete the locus, etc. Capabilities are
themselves protected through their storage in segregated
sections of entities.

5 Summary
The Grasshopper system provides support for three

basic abstractions, namely containers, loci and
capabilities. The storage abstraction provided by
containers both defines an addressing environment for
loci and simplifies sharing of data between loci through
the use of container mappings. By associating a manager
with a container, the system facilitates the implementation
of container-specific stability protocols, distributed
coherence protocols, and unconventional addressing
techniques such as those involving pointer swizzling.

The in-process model of computation adopted by the
project allows a locus to move naturally between
containers without the overhead of accompanying process
switches. Use of the in-process model is also expected to
simplify the implementation of distributed access to
containers.

The basic abstractions and associated operations
supported by the system provide sufficient flexibility to
allow for experimentation with a variety of persistence
paradigms. Issues still to be addressed include flexible
support for synchronisation, distribution, exception
handling and debugging. It is hoped to report on progress
in these areas in the near future.

References
1. Acceta, M., Baron, R., Bolosky, W., Golub, D., Rashid,

R., Tevanian, A. and Young, M. "Mach: A New Kernel
Foundation for Unix Development", Proceedings,
Summer Usenix Conference, pp. 93-112, 1986.

2. Brown, A. L. "Persistent Object Stores", Universities of
St. Andrews and Glasgow, Persistent Programming
Report 71, 1989.

3. Campbell, R. H., Johnston, G. M. and Russo, V. F.
"Choices (Class Hierarchical Open Interface for Custom
Embedded Systems", ACM Operating Systems Review,
21(3), pp. 9-17, 1987.

4. Chorus Systemes "Overview of the CHORUS©
Distributed Operating Systems", CS/TR-90-25.1, 1991.

5. Cockshott, W. P., Atkinson, M. P., Chisholm, K. J.,
Bailey, P. J. and Morrison, R. "POMS: A Persistent

Object Management System", Software Practice and
Experience, 14(1), 1984.

6. Dasgupta, P., LeBlanc, R. J. and Appelbe, W. F. "The
Clouds Distributed Operating System", Proceedings, 8th
International Conference on Distributed Computing
Systems, 1988.

7. Dearle, A., Rosenberg, J., Henskens, F. A., Vaughan, F.
and Maciunas, K. "An Examination of Operating System
Support for Persistent Object Systems", 25th Hawaii
International Conference on System Sciences, vol 1, ed
V. Milutinovic and B. D. Shriver, IEEE Computer
Society Press, Hawaii, U. S. A., pp. 779-789, 1992.

8. Fabry, R. S. "Capability-Based Addressing",
Communications of the A.C.M., 17(7), pp. 403-412,
1974.

9. Henskens, F. A. "A Capability-based Persistent
Distributed Shared Memory", PhD Thesis, University of
Newcastle, N.S.W., Australia, 1991.

10. Henskens, F. A., Rosenberg, J. and Keedy, J. L. "A
Capability-based Distributed Shared Memory",
Proceedings of the 14th Australian Computer Science
Conference, pp. 29.1-29.12, 1991.

11. Keedy, J. L. and Vosseberg, K. "Persistent Protected
Modules and Persistent Processes as the Basis for a More
Secure Operating System", Proceedings of the 25th
Hawaii International Conference on Systems Sciences,
vol 1, IEEE, Hawaii, USA, pp. 747-756, 1992.

12. Koch, B., Schunke, T., Dearle, A., Vaughan, F., Marlin,
C., Fazakerley, R. and Barter, C. "Cache Coherence and
Storage Management in a Persistent Object System",
Proceedings, The Fourth International Workshop on
Persistent Object Systems, pp. 99-109, 1990.

13. Lampson, B. "Distributed Systems - Architectures and
Implementation", Lecture Notes in Computer Science,
vol 105, Springer-Verlag, pp. 250-265.

14. Li, K. "Shared Virtual Memory on Loosely Coupled
Multiprocessors", Ph.D. Thesis, Yale University, 1986.

15. Lorie, R. A. "Physical Integrity in a Large Segmented
Database", ACM Transactions on Database Systems, 2,1,
pp. 91-104, 1977.

16. Morrison, R., Brown, A. L., Conner, R. C. H. and
Dearle, A. "Napier88 Reference Manual", Universities of
Glasgow and St. Andrews, Persistent Programming
Research Report PPRR-77-89, 1989.

17. Philipson, L., Nilsson, B. and Breidegard, B. "A
Communication Structure for a Multiprocessor Computer
with Distributed Global Memory", 10th International
Symposium on Computer Architecture, vol 11(3),
Stockholm, Sweden, ACM, pp. 334-340, 1983.

18. Rosenberg, J., Henskens, F. A., Brown, A. L., Morrison,
R. and Munro, D. "Stability in a Persistent Store Based
on a Large Virtual Memory", Proceedings of the
International Workshop on Architectural Support for
Security and Persistence of Information, ed J. Rosenberg
and J. L. Keedy, Springer-Verlag and British Computer
Society, pp. 229-245, 1990.

19. Rosenberg, J. and Keedy, J. L. "Object Management and
Addressing in the MONADS Architecture", Proceedings
of the 2nd International Workshop on Persistent Object
Systems, Appin, Scotland, 1987.

20. Tam, M., Smith, J. M. and Farber, D. J. "A Taxonomy-
based Comparison of Several Distributed Shared
Memory Systems", Operating Systems Review, 24(3), pp.
40-67, 1990.

21. Tanenbaum, A. S. "Operating Systems: Design and
Implementation", International Editions, Prentice Hall,
1987.

22. Vaughan, F. and Dearle, A. "Supporting Large Persistent
Stores Using Conventional Hardware", Proceedings of
the 5th International Workshop on Persistent Object
Systems, San Mineato, Italy, Springer-Verlag (to appear),
1992.

23. Vaughan, F., Schunke, T., Koch, B., Dearle, A., Marlin,
C. and Barter, C. "A Persistent Distributed Architecture
Supported by the Mach Operating System", Proceedings
of the 1st USENIX Conference on the Mach Operating
System, pp. 123-140, 1990.

24. Wilson, P. R. "Pointer Swizzling at Page Fault Time:
Efficiently Supporting Huge Address Spaces on Standard
Hardware", Computer Architecture News, 19(4), ACM,
pp. 6-13, 1991.

