
Published in:  Proceedings, Second International Workshop on Object Orientation in Operating Systems, Dourdan, 
France, ed L.-F. Cabrera and E. Jul, IEEE, pp. 81-86, 1992. 

Grasshopper - A Persistent Operating System 
for Conventional Hardware 

†Alan Dearle, *Rex di Bona, *James Farrow, *Frans Henskens, 
*Anders Lindström, *John Rosenberg, †Francis Vaughan 

 
†Department of Computer Science 
University of Adelaide 
S.A., 5001, Australia 
{al,francis}@cs.adelaide.edu.au 

  

*Department of Computer Science 
University of Sydney 
N.S.W., 2006, Australia 
{rex,matty,frans,anders,johnr}@cs.su.oz.au 

 

Abstract 
This paper describes Grasshopper, an operating 

system designed to provide generic mechanisms capable 
of being tailored to support a wide range of persistence 
paradigms.  A constraint placed on this design is that the 
system must be implementable on conventional 
architectures which support paged virtual memory. 

In this paper the basic system abstractions relating to 
addressing environments, processes, and protection are 
described.  It is shown that these provide explicit support 
for distributed persistent objects and processes, stability, 
and access control.  At the same time the system provides 
the flexibility to allow user implementation of alternate 
object management techniques. 

1.  Introduction 
Most persistent systems developed to date have been 

constructed above conventional operating systems.  The 
fact that these operating systems do not provide an ideal 
platform for such construction is not surprising since 
support for the principles of orthogonal persistence was 
not among their design goals.  In [21], for example, 
Tanenbaum lists the four major components of an 
operating system as being memory management, file 
system, input-output and process management.  In 
persistent systems the functionality of the file system and 
memory management is replaced by the persistent store.  
Many conventional operating systems extend the file 
abstraction to encompass input and output, an approach 
which is obviously inappropriate for persistent systems.  
Some persistent systems require that the state of a 
process persists.  This is not easily supported using 
conventional operating systems. 

It is to be expected that an operating system designed 
to support persistence will have a different structure from 
a conventional operating system and will provide a 
different set of facilities.  The principal requirements of 
such an operating system may be summarised as follows 
[7]: 

i. Support for persistent objects as the basic 
abstraction:  Persistent objects consist of data 
and relationships with other persistent objects.  
The system must therefore provide a 
mechanism for supporting the creation and 
maintenance of these objects and 
relationships.  This mechanism should be 
based upon a uniform addressing scheme used 
by all processes to access objects; that is all 
processes share a single logical address space. 

ii. Stability and resilience for objects:  The 
system must reliably manage the transition 
between long and short term memory 
transparently to the programmer. 

iii. Integration of processes into the object space:  
Process state should itself be contained within 
persistent objects.  The importance of this is 
that processes themselves become persistent 
and resilient.   

iv. Control over access to objects:  Although the 
persistent store is uniform, there is still a 
requirement for restricted access to objects for 
the same reasons that file systems contain 
access control mechanisms.  Any operating 
system supporting persistence must therefore 
provide some protection mechanism. 

We term an operating system that provides these 
facilities a persistent operating system. 

In this position paper we describe the motivation for 
and initial design of such an operating system.  A major 
constraint placed on the design is that it must be 
implementable on conventional architectures (for 
example Sun workstations and Intel 80386/486 based 
PCs).  This decision was made for the following reasons: 

• The performance of these systems is 
increasing dramatically every year due to the 
massive investment of the hardware vendors. 

• These architectures are highly available.  It is 
therefore easy to disseminate research results 
by providing copies of the system to 
interested parties. 



 

• Should commercialisation become a 
possibility in the future, a totally software 
platform is easier to market than a solution 
including specialised hardware. 

The effects of this constraint are that: 
• Addresses are typically a maximum of 32 bits 

long. 
• There is no hardware support for object 

addressing and protection. 
• The only memory management hardware 

available is based on fixed sized pages. 
In the next section we place the Grasshopper project 

into perspective in relation to other projects and indicate 
the major aims in terms of flexibility and 
experimentation.  This is followed by a description of the 
computational model and the basic abstractions over 
memory, computation and naming supported by the 
system.  We conclude with a discussion of the issues still 
to be addressed. 

2.  Related work 
Attempts to build persistent systems above 

conventional operating systems have encountered 
difficulties, caused in part by the fact that these operating 
systems were not designed with persistence in mind.  For 
example, the developers of Napier88 [16] have 
experienced unpredictable performance degradation 
apparently caused by bottlenecks in Unix.  In-depth 
knowledge of the internal structure of the operating 
system is required to make any substantial performance 
improvements. 

Even researchers using ‘open’ operating systems such 
as Mach [1] have experienced difficulties brought about 
by the inability to control certain operating system 
functionality.  For example, the distributed Napier group 
[23] had problems with lack of control over page discard. 

Other projects such as Monads [19] have taken the 
opposite approach and have developed purpose-built 
hardware and a new operating system which operates 
above it.  This approach shows much promise in that 
appropriate architectures can be provided thus avoiding 
the constraints mentioned above.  However, there are 
major disadvantages, such as the cost of development of 
new hardware, the time this development takes, and the 
inability to make the operating system and persistent 
applications readily available to other research groups. 

An intermediate approach is to develop a new 
operating system with provides support for persistence, 
but which operates on top of conventional hardware.  
Clouds [6] and to a lesser extent (since persistence was 
added later) Choices [3] are examples of such systems.  
The major problem with existing systems which 
implement this approach (in particular Clouds) is that 
they force a narrow model of persistence on the 
applications which run above them.  This precludes their 

use as a basis for experimentation with more general 
persistence paradigms. 

 
 

3.  Aims and goals of this project 
In this project we aim to design and implement an 

operating system kernel which provides generic 
mechanisms capable of being tailored to support a wide 
variety of persistence paradigms, 

In this sense Grasshopper has similar aims to the 
micro-kernel projects [1, 4], but with a specific 
orientation towards support for persistence. 

4  The Basic abstractions 
An operating system is largely responsible for the 

control and management of two entities: objects, which 
contain data and processes, the active elements which 
manipulate these objects.  One of the most important 
considerations in the design of an operating system is the 
model of interaction between these entities.  There are 
two principal models of computation which we call the 
out-of-process and the in-process models. 

The out-of-process model aligns processes with 
objects.  Communication between processes aligned with 
different objects is achieved through the use of messages.  
The in-process model provides for processes which move 
between objects.  Processes access objects by invoking 
them.  The invoke operation effectively causes a 
procedure call to code within the object.  By executing 
this code the process may access other data stored within 
the object.  It is interesting to note that, whilst the out-of-
process model cannot be used to efficiently simulate any 
other computational models, the in-process model is 
more flexible.  For instance, it can easily simulate the 
out-of-process model by associating a message passing 
process with every object.  The in-process model can also 
be used to implement other addressing paradigms, for 
instance distributed memory [10]. 

Protection of data is more complex with the use of the 
in-process model.  When a process invokes an object its 
addressing environment is defined by that object.  Thus 
the addressing environment of a process may change 
throughout its life.  As a result the host machine's 
addressing environment must be changed, not only on 
each process switch, but also on each invoke operation.  
This is in contrast to the out-of-process model, in which 
the addressing environment of a process is constant.  
Whilst we prefer the flexibility inherent in adoption of 
the in-process model for this project, we recognise that 
provision of strong protection mechanisms is another 
important consideration in developing our design. 

Objects in the Grasshopper system are called 
containers.  Persistence of containers is by reachability, 
that is a container persists whilst it is referenced by some 
other persistent entity.  Our concept of process is called a 



 

locus.  Loci move between containers in accordance with 
the in-process model.  Control over access to containers 
is achieved through the use of capabilities [8].  A locus 
must present a valid capability in order to invoke a 
container. 
4.1  Containers 

Containers are persistent entities which abstract over 
storage and thus provide the environment in which loci 
execute.  A container may consist entirely of its own 
data, or may (recursively) have one or more regions of 
other containers mapped onto parts of it.  Information 
about such mappings is maintained by the kernel. 

A locus executing within a container accesses the data 
stored in it using container addresses.  The container 
address of a word of data is its offset relative to the start 
of the container in which it is accessed.  Every container 
is paged and may have an associated manager which is 
responsible for: 

• provision of the pages of data stored in the 
container, 

• implementation of a stability algorithm for the 
container [2, 12, 13, 15, 18], and 

• maintenance of coherence in the case of 
distributed access to the container [9, 14, 17, 
20]. 

Containers consisting entirely of mapped regions need 
not have a manager. 

Managers are ordinary programs which reside and 
execute within their own containers.  A manager is 
invoked whenever the kernel detects a memory access 
fault on an access to data stored in the container it 
manages.  It should be noted that the manager for a 
mapped region is the manager for the container which 
contains the region with no mappings.  This is shown in 

figure 1.  In this figure, Container 1 has the shaded 
region from Container 2 (which itself has no mappings) 
mapped onto it.  Access faults for the shaded pages are 
handled by Manager 2, while those for the other (non-
shaded and unmapped) pages are handled by Manager 1. 

The mappings described above are defined on a global 
basis, and as such are visible to all loci executing in the 
mapped container.  Grasshopper also provides per locus 
mappings.  Per locus mappings are only visible to one 
locus.  This feature allows multiple loci to concurrently 
map regions such as their individual stacks in the same 
range of container addresses. 

Whilst default managers are provided with the system, 
experimentation is supported by allowing users to 
develop their own managers.  Since managers have full 
control over the mapping between container addresses 
and the backing store it is possible to provide a modified 
view of the container data.  For example, a manager 
could implement large persistent addresses using a 
pointer swizzling technique such as those described in [2, 
5, 22, 24]. 

4.2  Loci 
Loci are the active entities in the Grasshopper system.  

Each locus must at any instant be executing within a 
container, but may meander through the containers in 
the store, moving from one container to the next by 
invocation.  It is possible for multiple loci to 
simultaneously execute within the same container.  The 
invoke operation is in effect a procedure call to a well 
known location in another container.  The kernel 
optionally maintains a history of invoke operations so 
that a corresponding return may take place. 
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Figure 1.  Provision of Pages for Mapped Containers. 

Support for persistent processes [11] is provided by 
allowing the state of a locus to be captured within a 
persistent object. 

4.3  Protection 
Access to any entity in the Grasshopper system is 

obtained by the presentation of a key called a capability 
[8].  The capabilities indicate the type of access permitted.  
This varies depending on the kind of entity.  For example, 
access rights in a container capability include the right to 
invoke the container, the right to map the container into a 
another container, the right to map other containers into a 
container, etc.  Access rights in a locus capability include 
the right to suspend the locus, the right to activate the 
locus, the right to delete the locus, etc.  Capabilities are 
themselves protected through their storage in segregated 
sections of entities. 

5  Summary 
The Grasshopper system provides support for three 

basic abstractions, namely containers, loci and 
capabilities.  The storage abstraction provided by 
containers both defines an addressing environment for 
loci and simplifies sharing of data between loci through 
the use of container mappings.  By associating a manager 
with a container, the system facilitates the implementation 
of container-specific stability protocols, distributed 
coherence protocols, and unconventional addressing 
techniques such as those involving pointer swizzling. 

The in-process model of computation adopted by the 
project allows a locus to move naturally between 
containers without the overhead of accompanying process 
switches.  Use of the in-process model is also expected to 
simplify the implementation of distributed access to 
containers. 

The basic abstractions and associated operations 
supported by the system provide sufficient flexibility to 
allow for experimentation with a variety of persistence 
paradigms.  Issues still to be addressed include flexible 
support for synchronisation, distribution, exception 
handling and debugging.  It is hoped to report on progress 
in these areas in the near future. 
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