

Qualifying Types
Illustrated by Synchronisation Examples

J. Leslie Keedy1, Gisela Menger1, Christian Heinlein1 and Frans Henskens2

1Department of Computer Structures
University of Ulm

D-89069 Ulm
Federal Republic of Germany

2School of Electrical Engineering
and Computer Science,

University of Newcastle, N.S.W. 2308
Australia

{ keedy, menger, heinlein} @informatik.uni-ulm.de henskens@cs.newcastle.edu.au

Abstract. Quali fying types represent a new approach to modifying the behav-
iour of instances of other types in a general way, in the form of components
which can be designed and implemented without a prior knowledge of the types
to be modified or their implementations. This paper ill ustrates the idea by
showing how they can be used to program various standard synchronisation
problems, including mutual exclusion, reader-writer synchronisation and sev-
eral variants of the bounded buffer problem.

1 Introduction

Advocates of aspect oriented programming (AOP) [11] rightly emphasise that much
can be gained by separating different aspects of programmed appl ications. The aim in
AOP is to separate the descriptions of various aspects of a software system such as
class hierarchies, functionality and synchronisation [7] in order to increase readabilit y
and facilit ate changes. These separate descriptions are then combined by an "aspect
weaver" into a standard programming language representation.
The language AspectJ [12] can be considered as an aspect weaver for Java. This sup-
ports various constructs (e.g. "pointcuts" for before- and after-"advice", "introduction"
for adding methods, wild cards which allow method names to be grouped, etc.) which
allow programmers to define aspects as separate textual units that can then be applied
to a Java class to produce a new class which contains the required aspect.
An approach which modifies Java programs at the source level inevitably has some
disadvantages, especially with respect to aspects which have a wide general applica-
tion, such as synchronisation, protection or monitoring. Here the ideal would be to
define one or more aspects as completely independent modules without them needing
to have knowledge of the classes which they might quali fy, and then simply apply
them to these classes (or even individual objects) as required. To take a simple exam-
ple, an aspect such as "reader-writer synchronisation" might have an implementation
which uses the following pattern (using the reader priority algorithm from [4]):
// the data structures
Semaphore mutex = new Semaphore(1);
Semaphore readerExclusion = new Semaphore(1);
int readcount = 0;

// the writer synchronisation pattern
 mutex.p();
 --- call the writer method to be synchronised ---
 mutex.v();

// the reader synchronisation pattern
 readerExclusion.p(); readcount++; if (readcount == 1) mutex.p();
 readerExclusion.v();
 --- call the reader method to be synchronised ---
 readerExclusion.p(); readcount--; if (readcount == 0) mutex.v();
 readerExclusion.v();

Java and other standard OOP languages have no mechanism allowing such a general
pattern to be defined and implemented once as an independent unit and then applied
to any class or object which needs to be synchronised. Consequently any aspect
weaver which compiles to such target languages must face some substantial problems.
Regardless of the technique used (e.g. simply modifying the source code of individual
classes, defining subclasses which implement the aspect) each existing class must be
considered separately. It must be clear which methods are readers, which are writers,
how to handle public fields, how to handle static members, etc. An aspect of this kind
can be written only if the target classes have been designed according to some special
rules (e.g. writer methods begin with "set", reader methods with "get", there must be
no public fields and no static members). And since using Java ultimately involves
modifying the methods of the target class, the modification has a static character (e.g.
all instances of the target class are reader-writer synchronised, etc.).
Thus it is not possible simply to define a general component and apply it (together
with other similar components) in a straightforward manner to objects as they are
dynamically created. Yet the requirement is both simple and relevant. The example of
synchronisation is not an exceptional case. Another significant example is the need to
control access to objects, e.g. by dynamically checking whether the client is listed on
an access control li st (ACL) or whether he can supply a password, whether the expiry
date for a trial use of an object has expired, etc. Then there is the issue of monitoring,
i.e. maintaining relevant information about access to objects, e.g. for debugging, for
detecting hackers, etc. A more advanced application for such general purpose mod-
ules is a transaction mechanism.
The aim of qualifying types is to provide just such a mechanism, which allows pro-
grammers to define and implement general purpose components that can quali fy the
behaviour of objects without having a special knowledge of their interfaces nor their
implementations. However, for reasons hinted at above, such a mechanism cannot be
simply added to conventional OOP languages. To make it work, the language must
include some special features. In the next section we briefly outline how these fea-
tures are provided in the language Timor which is currently being designed at the
University of Ulm [9, 10].

2 The Timor Language

Timor can be viewed as an object oriented programming language which, although
based syntactically on Java and C++, breaks with some fundamental concepts of OOP
in order to provide a better support for the idea of developing separate components
(including, but not only, quali fying types) in such a way that these can be easily
mixed and matched with each other to produce new application systems.

The first major difference from standard OOP is that the class concept is abandoned
in favour of a separation of types and their implementations (which are not types),
thus allowing a type to have multiple implementations. This feature of Timor is de-
scribed in more detail in [9].
Types are defined according to the information hiding principle [18]. A key require-
ment for supporting quali fying types is that the programmer must designate the in-
stance methods of any type either as op methods, i.e. operations which can modify the
state of the instance, or as enq methods, i.e. enquiries which can access but not mod-
ify the state of an instance (cf. e.g. methods declared const in C++). Thus for syn-
chronisation and other purposes (e.g. protection, transaction management) the in-
stance methods of a type are automatically classified as readers or writers.
For programming convenience, a type definition can also include members resem-
bling fields or references1. However, such public members are abstract variables,
which formally correspond to a pair of instance methods, i.e. an op for setting a value
or reference, and an enq for getting a value or reference. Hence client accesses to
abstract variables can be treated from the viewpoint of synchronisation, etc. li ke other
instance methods.
A type can have zero or more (named) constructors, introduced by the keyword
maker2. It can also have methods introduced by the keyword binary. These are in-
tended to allow multiple instances of the type, passed as parameters, to be manipu-
lated (e.g. compared). Under normal circumstances binary methods can only access
these instances via their instance methods. Other forms of static methods (and fields)
are not supported in Timor, but the effects of these can be achieved in other ways.
Here is an example of a type which will be used in later examples:
type Thing {
 Atype anAbstractVariable;
 Thing* anAbstractReference;
 op void doSomething(int x);
 op int doSomethingElse(int y);
 enq int getSomething();
 enq int getSomethingElse();
 binary boolean equal(Thing t1, t2);
}

Separating types and implementations leads to a separation of subtyping and code re-
use (which includes, but is no longer limited to, subclassing), described in [9]. Timor
supports both multiple type inheritance and multiple code re-use, as is partly ill us-
trated in [10].

3 Qualifying Types and Bracket Routines

A quali fying type is a normal Timor type which has the additional property that its
instances can be used to qualif y the instances of other types. Quali fication is a mecha-
nism not found in the conventional OOP paradigm, although it has similarities to

1 A reference defines a logical relationship between objects. It is not a physical

pointer. It cannot be directly manipulated, and indirection (i.e. references to refer-
ences) is not supported.

2 Where appropriate the compiler adds a parameterless maker with the name init.

some techniques discussed in section 8. The basic idea is that when a client invokes
an instance method of some target object, a special method of a quali fying type
(known as a bracket routine) can be scheduled in its place. This can, but need not, use
a special method name body to invoke the intended instance method of the target
object. This notion is ill ustrated in Figure 1.

Fig. 1 (a): A Client invokes an Unqualif ied Target

body

method
return

method
invocation Target

instance

Fig. 1 (b): A Client invokes a Quali fied Target

bracket
return

Client
instance

prelude;
body(...);
postlude;
(Bracket)

Qualifying
instance
instance

method
invocation

method
return

Client
instance

Target
instance

This property is reflected in the type definition by a qualifies clause, e.g.
type Mutex qualifies any
 augmenting {
 op bracket op(...); // a bracket routine for synchronising ops
 op bracket enq(...);// a bracket routine for synchronising enqs
 }

{/* in this example there are no "normal" instance methods, etc. */}

The keyword any indicates that instances of this type can quali fy instances of any
other type. The augmenting clause lists the bracket routines of the quali fying type3. In
this case the bracket routines can quali fy op and/or enq methods, as in the example.
Bracket routines are themselves classified as op or enq, depending whether they mod-
ify or simply read the instance data of the qualifying instance. (This allows quali fying
instances themselves to be qualif ied.)
Here is an implementation of the type Mutex:
impl Mutex1 of Mutex {
 Semaphore mutex = Semaphore.init(1);//a semphore is initialised to 1
 op bracket op(...) { // the code for handling ops (writers)
 mutex.p(); try {return body(...);} finally {mutex.v();}
 }
 op bracket enq(...) { // the code for handling enqs (readers)
 mutex.p(); try {return body(...);} finally{mutex.v();}
 }
}

The invocation body(...)indicates at what point in the code the target method in-
voked by the client (or in cases of multiple quali fication, possibly a further bracket

3 The keyword augmenting indicates that the bracket routines unconditionally add

to the behaviour of quali fied methods, i.e. they add a prelude and/or a postlude
and unconditionally invoke the target method. Alternative keywords replacing
and testing indicate that the target method is not invoked at all , or that it is in-
voked conditionally (e.g. after testing some protection condition).

routine) is called. In general bracket routines (i.e. those which quali fy any) the actual
parameter list is not known and therefore cannot be modified in the bracket routine;
the notation (...) indicates in this context that the parameters supplied by the client
are passed on unchanged.
The try/finally construct is used in this example to ensure that if the target routine
terminates abnormally the semaphore will nevertheless be released.
Creating a mutually exclusive Thing requires an instance of the type Thing and an
instance of the type Mutex. The relationship between them can be set up as follows:
Mutex exclusive = Mutex.init();
Thing t = exclusive Thing.init();

In the second line a quali fying expression (here the variable exclusive) is associated
with the creation of an instance of a (quali fied) type. Hence in the above example the
new Thing t is associated with an existing instance of a quali fying type.
There is an alternative way of associating a Mutex instance with a Thing instance:
Thing t = Mutex.init() Thing.init();

In this case the quali fying expression returns a new (anonymous) instance of Mutex.
In either case, the client of t accesses it as if it were not qualified, e.g.
t.doSomething();

Indeed he might not know that it is quali fied (e.g. if it receives this as a parameter of
type Thing). In the case of synchronisation the anonymous form is often useful. How-
ever, separating the declarations of instances of Mutex and Thing allows several ob-
jects to be qualif ied by a single instance of a quali fying type, e.g.
Thing t1 = exclusive Thing.init();
Thing t2 = exclusive Thing.init();

In this case both t1 and t2 are synchronised using the same semaphore instance, and
in fact even objects of different types could be synchronised together, e.g.
Thing t1 = exclusive Thing.init();
AnotherThing t2 = exclusive AnotherThing.init();

One effect of creating an anonymous instance is that its own instance methods cannot
be explicitly invoked. This makes sense for synchronisation, which needs no explicit
methods. However, most quali fying types need such explicit methods. For example,
the bracket routines of a quali fying type might check that clients are listed in an ACL.
Such types need explicit methods for maintaining entries in the ACL. These normal
methods must be invocable via an explicit variable. The absence of explicit methods
in synchronising types is the exception rather than the rule.
When a client invokes an operation of t (i.e. by calli ng doSomething or doSome-
thingElse, or by modifying the abstract variable anAbstractVariable or an-
AbstractReference) the op bracket of the instance exclusive is scheduled. Similarly
the invocation of getSomething or getSomethingElse or the reading of anAbstract-
Variable or anAbstractReference cause the enq bracket to be scheduled.
If the equal method of Thing is invoked, no bracket routine intervenes directly. How-
ever, when its implementation accesses the instance methods of its parameters, these
are bracketed as appropriate.

4 Reader-Writer Synchronisation

Distinguishing between op and enq methods facilit ates the development of compo-
nents which provide reader-writer synchronisation in a general way. Here is a type

definition and an implementation based on the reader priority algorithm first pub-
lished by Courtois, Heymans and Parnas [4], cf. section 1:
type RWsync qualifies any
augmenting {
 op bracket op(...); // brackets ops
 op bracket enq(...); // brackets enqs
} {/* no "normal" methods */}

impl Curtois of RWsync
reuses Mutex1 {
 Semaphore readerExclusion = Semaphore.init(1);
 int readcount = 0;
 op bracket enq(...) { //reader synchronisation
 readerExclusion.p(); readcount++;
 if (readcount == 1) ^Mutex1.mutex.p();
 readerExclusion.v();
 try {return body(...);}
 finally {
 readerExclusion.p(); readcount--;
 if (readcount == 0) ^Mutex1.mutex.v();
 readerExclusion.v();
 }
 }
}

In this implementation the op bracket routine and the mutual exclusion semaphore
mutex are re-used from Mutex14. (Code re-use in Timor is described in [9, 10].)

5 Bounded Buffer Synchronisation

We now consider how a bounded buffer might be synchronised using bracket rou-
tines. First we define a basic unsynchronised type:
type BoundedBuffer {
 maker init(int maxSize);
 op void produce(ELEM e);
 op ELEM consume();
}

The type ELEM can be thought of as any relevant type, here representing the type of
the elements in the buffer. Timor supports a generic mechanism along the lines de-
scribed in [6], but this is not directly relevant to our discussion and is not described
here. The following is a simple array implementation:
impl BB of BoundedBuffer {
 ELEM[] buffer;
 int nextFull = 0, nextEmpty = 0;
 int bufferSize;
 op void produce(ELEM e) {
 buffer[nextEmpty] = e; nextEmpty++; nextEmpty %= bufferSize;
 }
 op ELEM consume() {
 ELEM temp = buffer[nextFull]; nextFull++; nextFull %= bufferSize;
 return temp;
 }

4 As multiple implementations can be re-used the hat symbol indicates which im-

plementation is actually being re-used in a super-like context.

 maker init(int maxSize) {
 bufferSize = maxSize; buffer = ELEM[].init(maxSize);
 }
}

There are several possibiliti es for synchronising a bounded buffer, depending on the
number of producer and the number of consumer processes. In the simplest case the
basic type can be used in a sequential program which does not require synchronisation
(though the program logic must then be designed to ensure that overflow and under-
flow of the buffer do not occur).
Now consider the case of a single producer and a single consumer process. Here the
two instance methods require different synchronisation protocols. But since both are
op methods, the technique described so far is inadequate. Instead we can use a spe-
cialised quali fying type, i.e. a type designed to quali fy some specifically named
type(s) rather than any type. Here is an example:
type SyncBB qualifies BoundedBuffer
augmenting {
 op void produce(ELEM e);
 op ELEM consume();
}
{ maker init(int maxSize);
}

Here the qualifies clause nominates a specific type and specifies which of its meth-
ods are to be quali fied. In this example a maker of the qualifying type needs to be
explicitly parameterised, as we see from the following implementation code:
impl SyncBB1 of SyncBB {
 Semaphore full = Semaphore.init(0);
 Semaphore empty;
 maker init(int maxSize) {
 empty = Semaphore.init(maxSize);
 }
 op void produce(ELEM e) {
 empty.p(); try {body(...);} finally {full.v();}
 }
 op ELEM consume() {
 full.p(); try {return body(...);} finally {empty.v();}
 }
}

In this example the body statement in the two bracket routines uses the parameter
form (...) to indicate that the actual parameters are not modified, although this is
possible in the case of specialised bracket routines. (It would be correct for example
to formulate the body statement in the produce bracket as body(e).)
Given an initialised integer maxSize, which defines the maximum number of entries
in the buffer, an instance of SyncBB designed to quali fy a buffer can be instantiated as:
SyncBB synchronised = SyncBB.init(maxSize);

An instance of BoundedBuffer can be qualif ied as follows by synchronised:
BoundedBuffer bb = synchronised BoundedBuffer.init(maxSize);

The instance bb is now adequately synchronised provided that it is accessed only by a
single producer process and a single consumer process.
However, if a buffer can be accessed in parallel by multiple producers, these must
exclude each other (though not a consumer process or processes). An ineff icient way
of achieving this is to associate an instance of Mutex with it, e.g.

Mutex exclusive = Mutex.init();
BoundedBuffer bb = synchronised, exclusive
 BoundedBuffer.init(maxSize);

If an instance is quali fied by more than one qualifying instance, Timor defines that the
order of applying the bracket routines is left to right. Thus in this example when the
produce or the consume method is invoked, the relevant bracket routine of
synchronised is executed first, and when it executes the body statement this results in
the op bracket routine of exclusive being invoked. Then when the latter executes the
body statement the relevant method of bb is invoked. In this example the order of the
quali fying types is significant. Reversing this order leads to a deadlock if a producer
attempts to access a full buffer or a consumer attempts to access an empty buffer.
Using mutual exclusion with a bounded buffer is ineff icient, because producers need
only exclude other producers and consumers other consumers, as the SyncBB type
takes care of mutual interference between the two groups as groups.
To handle the case of multiple producers another specialised type can be defined:
type MultiProducer qualifies BoundedBuffer
augmenting {
 op void produce(ELEM e);
}
{ /* no normal methods */ }

impl ProdMutex of MultiProducer {
 Semaphore mutex = Semaphore.init(1);
 op void produce(ELEM e) {
 mutex.p(); try{body(...);} finally {mutex.v();}
 }
 }

This is a simple variant of Mutex which is defined as a specialised type, thus allowing
the bracket code to be applied specifically to the produce method without affecting
the consume method. (Mutex cannot discriminate between these two op methods.) An
instance can be initialised as follows:
MultiProducer multiProducer = MultiProducer.init();

Similar considerations apply to multiple parallel consumers, leading to the definitions:
type MultiConsumer qualifies BoundedBuffer
augmenting {
 op ELEM consume();
}
{ /* no normal methods */ }

impl ConsMutex of MultiConsumer{
 Semaphore mutex = Semaphore.init(1);
 op ELEM consume() {
 mutex.p(); try{return body(...);} finally {mutex.v();}
 }
}

and an instantiation
MultiConsumer multiConsumer = MultiConsumer.init();

Given these additional components actual buffers can be declared to suit any syn-
chronising case, as follows:
(a) One consumer process, several producers:
BoundedBuffer bb = synchronised, multiProducer
 BoundedBuffer.init(maxSize);

(b) One producer process, several consumers:
BoundedBuffer bb = synchronised, multiConsumer
 BoundedBuffer.init(maxSize);

(c) Several producers, several consumers:
BoundedBuffer bb = synchronised, multiProducer, multiConsumer
 BoundedBuffer.init(maxSize);

6 Specialised Qualifying Types vs. Subtyping

Inheritance is a hallmark of traditional OO languages. This is not a reasonable alterna-
tive to general quali fying types for achieving such aims as mutual exclusion or reader-
writer synchronisation, because the use of subtyping to achieve such aims implies that
special code has to be added to each type to be quali fied. However, it is interesting to
compare subtyping with specialised qualifying types.
In any OO programming language a class corresponding to the type BoundedBuffer
and its implementation BB can have a subclass which extends it to add the functional-
ity of SyncBB and its implementation SyncBB1, by overriding the methods produce
and consume and from within the overriding methods using super to invoke the origi-
nal methods at the point where the bracket routines of SyncBB1 invoke the body
statement. We call this subclass SyncBBderived. It can correctly implement the case
of a single producer and a single consumer.
We can now apply the same technique to mimic the effect of MultiProducer, i.e. by
extending SyncBBderived with a subclass MultiProducerDerived, which overwrites
the method produce to add mutual exclusion.
Since multiple consumers are handled orthogonally to multiple producers they might
be provided for in a further subclass of SyncBBderived, i.e. MultiConsumerDerived,
which overwrites the method consume to add mutual exclusion.
The case of both multiple producers and multiple consumers can be handled in a new
class MultiProducerConsumerDerived which inherits from both MultiPro-

ducerDerived and MultiConsumerDerived without adding new methods. This is
ill ustrated in Figure 2:

Bounded
Buffer

SyncBB
derived

MultiProducer
Derived

MultiConsumer
Derived

MultiProducer
ConsumerDerived

Fig. 2: A Subclass Hierarchy

Since this ideally requires multiple implementation inheritance, languages such as
Java cannot handle the situation cleanly, so that a language which supports quali fying
types might be regarded as superior to these. However, there are of course OO lan-
guages which do handle multiple implementation inheritance, including Timor.
This hierarchy is in fact typical of the kind of multiple inheritance which arises when
orthogonal properties (here multiple producers and multiple consumers) are com-

bined, as is discussed in more detail in [10], and a Timor solution can follow the same
pattern as is outlined there for the example of the Timor Collection Library.
Although a solution based on quali fying types can in this case be handled via subtyp-
ing, not all solutions can easily achieve this. In fact one might consider it almost a
matter of luck that the above solution is correct, because it actually results in the pro-
ducer and consumer mutual exclusions being applied before the standard buffer syn-
chronisation (from SyncBBderived) is applied. Fortunately this does not lead to a
deadlock. However, using subtyping in the same way to mimic the first solution pre-
sented (based on the use of a single mutex semaphore to synchronise both producers
and consumers, see Figure 3) would result in an incorrect solution which contains the
risk of deadlocks.

Bounded
Buffer

Fig. 3: A Subclass Hierarchy with Full Mutual Exclusion

SyncBB
derived

Mutex
Derived

Changing the order in the hierarchy (i.e. placing MutexDerived above SyncBB-
derived, see Figure 4) can solve that problem, but then it leads to a further problem:
instances of MutexDerived would not synchronise correctly. That can be avoided by
defining it as an abstract class. But there remains a further problem. We now no
longer have a class which simply synchronises a single producer and a single con-
sumer without the overkill of mutual exclusion.

Bounded
Buffer

Fig. 4: A Rearranged Subclass Hierarchy

Mutex
Derived

SyncBB
derived

We see from this example that subtyping is considerably less flexible in some circum-
stances than quali fying types, because using it to mimic bracket routines with calls to
overridden methods determines the order of the "bracket routines", and this order may
not correspond to the logic required by the problem being solved. Furthermore, in
contrast with quali fying types in Timor (which do not result in new subtype relation-
ships), the use of subtyping to mimic bracket routines also creates new type relation-
ships which may not be appropriate [14].
Two further points are also relevant. Synchronisation, as was noted above, is excep-
tional from the viewpoint of quali fying types in that it does not require its own ex-
plicit methods. If quali fying types are mimicked by subtyping they must add any
additional methods to those which appear in the supertype. While this is possible, it

may not be desirable. For example if a quali fying type implements protection by
means of an access control li st (and therefore has methods for adding entries to and
removing them from this list) it would be inappropriate to add these methods to in-
stances being protected! Finally the flexibilit y which allows an instance of a quali fy-
ing type to quali fy more than one quali fied instance cannot be simulated straightfor-
wardly by means of subtyping.

7 Synchronising Views

The use of specialised quali fying types has so far been ill ustrated by defining types
which quali fy instances of individual types. However, the real power of specialised
bracket routines comes into play when they are used to quali fy view interfaces5 which
might be included in many types. For example one might define a view Openable
along the following lines:
view Openable{
 const int CLOSED = 0;
 const int READ = 1;
 const int WRITE = 2;
 op void open(int openMode) throws OpenError;
 op void close();
 enq int currentOpenMode();
}

which could appropriately be included in many type definitions. On the basis of such
a view it is then possible to define a specialised quali fying type, e.g.:
type OpenSynchronised qualifies Openable
augmenting {
 op void open(int openMode);
 op void close();
}
{/* as usual with synchronisation, there are no explicit methods *}

with an implementation which uses the parameter openMode to determine when to
apply the reader and when the writer synchronisation protocol. (In the close bracket it
can access the enquiry currentOpenMode for the same purpose.)
Objects of types extending Openable can be instantiated with OpenSynchronised, e.g.
type OpenableThing extends Thing, Openable;

OpenSynchronised openSync = OpenSynchronised.init();
OpenableThing ot = openSync OpenableThing.init();

To attempt to use conventional subtyping to achieve the bracketing in such a case
would require that each type to be synchronised (e.g. type OpenableThing) would
have to be individually implemented with the synchronisation code. Hence it makes
sense to support specialised quali fying types in addition to conventional inheritance.

5 A view interface defines methods which can be included in different types. It can

have an implementation but no maker. It cannot be independently instantiated.

8 Related Work

This paper has ill ustrated by example how one aspect commonly encountered in pro-
gramming situations, viz. synchronisation, can be handled using quali fying types with
bracket routines. The basic idea is based on earlier work in our group, beginning with
the concept of attribute types and bracket routines, cf. [8].
The idea that code can be added to existing procedures is by no means new, and dates
back at least to Pascal-Plus [21]. A form of bracketing is possible in almost all object
oriented languages by redefining the methods in a subclass and calling the original
methods from within the redefined methods via a super construct. So, for example, a
class RWsyncThing can be defined as a subclass of Thing. But in languages which
support only single inheritance, a subtype RWsyncBook of Book must include all the
same additional code as RWsyncThing.
In languages such as Eiffel [15] with multiple inheritance, a class RWsync can be de-
fined and inherited by both RWsyncThing and RWsyncBook. This means that the type
RWsync is only declared in a single place. The bracketing must, however, still be
achieved via redefinition in both RWsyncThing and RWsyncBook.
When the inner construct of Beta [13] (cf. body) appears in a superclass method, the
same method in a subclass is bracketed by the code of the superclass method. But a
Beta superclass RWsync would need to know exactly which methods occur in its sub-
class RWsyncThing in order to bracket them and would therefore be of no use in
bracketing RWsyncBook.
Mixins are a generalization of both the super and the inner constructs. The language
CLOS [5] allows mixins as a programming technique without supporting them as a
special language construct, but a modification of Modula-3 to support mixins explic-
itly has also been proposed [3]. A mixin is a class-like modifier which can operate on
a class to produce a subclass in a manner similar to that of quali fying types. So, for
example, a mixin RWsync can be combined with a class Thing to create a new class
RWsyncThing. Bracketing can be achieved by using the 'call -next-method' statement
(or super in the Modula-3 proposal) in the code of the mixin methods. As with Beta,
however, the names of the methods to be bracketed must be known in the mixin. This
again prevents it from being used as a general component.
In [19] encapsulators are described as a novel paradigm for Smalltalk-80 program-
ming. The aim is to define general encapsulating objects (such as a monitor) which
can provide pre- and post-actions when a method of the encapsulated object is in-
voked. This is similar to bracket routines but is based on the assumption that the en-
capsulator can trap any message it receives at run-time and pass this on to the encap-
sulated object. This is feasible only for a dynamically typed system. The mechanism
ill ustrated in this paper can be seen as a way of achieving the same result in a stati-
cally type-safe way via a limited form of multiple inheritance. The applications of
encapsulators are also more limited than bracket routines since there is no way for
them to distinguish between reader and writer methods.
Specialised quali fying types can be simulated using Java proxies, but the program-
ming is considerably more cumbersome, and methods to be bracketed cannot be iso-
lated from those not requiring brackets. Thus all method calls to a target object must
be redirected to the proxy. In a case such as Openable, where the open and close
methods need be called only once, between which many other method invocations can
occur, this can be very ineff icient. Even when methods require bracketing the ap-

proach is ineff icient: the proxy object and an associated handler must both be in-
voked, and reflection used to establish which target methods have been invoked. Mul-
tiple quali fication of a target method is particularly complicated and ineff icient.
Composition filters [2] allow methods of a class to be explicitly dispatched to internal
and external objects. In addition the message associated with a method call can be
made available via a meta filter to an internal or external object, thus allowing the
equivalent of a bracket routine to be called. However, because filters are defined in
the "target" class, a dynamic association of f ilters with classes is not possible, and all
the objects of a class are qualif ied in the same way.
MetaCombiners support the dynamic addition/removal of mixin-like adjustments for
individual objects [16]. The effect of specialised quali fying types can be achieved
with specialisation adjustments (which can invoke super) on an individual object
basis. Similarly field acquisition and field overriding [17] can be used to simulate
inheritance of field methods and therefore in conjunction with the keyword field (cf.
super) can simulate the use of body in bracket routines. In both cases there appears to
be no equivalent to general bracket routines.
The experimental language Piccola [1] is a component composition language which
allows abstractions not well supported by the OO paradigm (such as synchronisation)
to be integrated into applications. While it has similar aims, it differs from the Timor
approach, where quali fying types are integrated into the base language and therefore
need no special composition language.
The AOP language AspectJ [12] and similar languages (cf. [20]) can achieve many of
the aims of quali fying types, but with a number of limitations:
- Because Java has no way of distinguishing between op and enq methods, some con-
vention for method names must be used (e.g. methods beginning with set are writers,
those with get are readers). For target classes not developed according to the conven-
tion each class must be examined individually and a separate aspect developed for it.
- Because they operate at the source level an aspect affects the target class, so that
different objects of the same class cannot be qualif ied in different ways.
- Because aspects are not separately instantiated an aspect "instance" cannot be flexi-
bly associated with a group of objects rather than a single object.
- New methods explicitly defined with an aspect ("introduction") become methods of
the quali fied objects. Thus methods defined, for example, to manipulate an ACL in a
protection aspect, become methods of the objects being protected, so that a protected
object includes the methods which control its protection!
- Because the order of the execution of AspectJ advice is statically defined in aspects,
these must be defined with a knowledge of each other, except in cases where prece-
dence is considered to be irrelevant. In contrast the execution order of Timor bracket
routines is easily defined at the time a target object is created.
- In contrast with AspectJ aspects, general quali fying types and specialised types
based on view interfaces (e.g. Openable) do not depend on a knowledge of (or the
presence at compile time of) each other's source code or that of types which they
might quali fy.

9 Conclusion

The paper has ill ustrated the use of Timor quali fying types, using synchronisation as
an example. Inevitably not all features of this new concept have been described in

full . Future papers will discuss how quali fying types are defined, how they relate to
the type system and how they behave (for example when nested) at run-time.
The comparison with other work indicates that quali fying types provide a powerful
new mechanism for supporting general aspects of programming, such as synchronisa-
tion, protection and monitoring. It is particularly advantageous that they can be sepa-
rately implemented as components which can be applied in many cases to any type, or
in more specialised cases to any type which supports a particular view interface.

Acknowledgements

Special thanks are due to Dr. Mark Evered and Dr. Axel Schmolitzky for their invalu-
able contributions to discussions of Timor and its predecessor projects. Without their
ideas and comments Timor would not have been possible.

References

[1] F. Achermann and O. Nierstrasz, "Applications = Components + Scripts - A
Tour of Piccola," in Software Architectures and Component Technology, M.
Aksit, Ed.: Kluwer, 2001, pp. 261-292.

[2] L. Bergmans and M. Aksit, "Composing Crosscutting Concerns Using Com-
position Filters," Communications of the ACM, vol. 44, no. 10, pp. 51-57,
2001.

[3] G. Bracha and W. R. Cook, "Mixin-based Inheritance," ECOOP/OOPSLA
'90, Ottawa, Canada, 1990, ACM SIGPLAN Notices, vol. 25, no. 10, pp.
303-311.

[4] P. J. Courtois, F. Heymans, and D. L. Parnas, "Concurrent Control with
Readers and Writers," Communications of the ACM, vol. 14, no. 10, pp. 667-
668, 1971.

[5] L. G. DeMichiel and R. P. Gabriel, "The Common Lisp Object System: An
Overview," ECOOP '87, Paris, 1987, Springer-Verlag, LNCS, vol. 276, pp.
151-170.

[6] M. Evered, J. L. Keedy, G. Menger, and A. Schmolitzky, "Genja - A New
Proposal for Genericity in Java," 25th International Conf. on Technology of
Object-Oriented Languages and Systems, Melbourne, 1997, pp. 169-178.

[7] D. Holmes, J. Noble, and J. Potter, "Aspects of Synchronisation," 25th Inter-
national Conference on Technology of Object-Oriented Languages and Sys-
tems, Melbourne, 1997, pp. 7-18.

[8] J. L. Keedy, K. Espenlaub, G. Menger, A. Schmolitzky, and M. Evered,
"Software Reuse in an Object Oriented Framework: Distinguishing Types
from Implementations and Objects from Attributes," 6th International Con-
ference on Software Reuse, Vienna, 2000, pp. 420-435.

[9] J. L. Keedy, G. Menger, and C. Heinlein, "Support for Subtyping and Code
Re-use in Timor," 40th International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS Pacific 2002), Sydney, Australia,
2002, Conferences in Research and Practice in Information Technology, vol.
10, pp. 35-43.

[10] J. L. Keedy, G. Menger, and C. Heinlein, "Inheriting from a Common Ab-
stract Ancestor in Timor," Journal of Object Technology (www.jot.fm), vol.
1, no. 1, pp. 81-106, 2002.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loing-
tier, and J. Irwin, "Aspect-Oriented Programming," ECOOP '97, 1997, pp.
220-242.

[12] G. Kiczales, E. Hilsdale, J. Hugonin, M. Kersten, J. Palm, and W. G. Gris-
wold, "An Overview of AspectJ," ECOOP 2001 - Object-Oriented Pro-
gramming, 2001, Springer Verlag, LNCS, vol. 2072, pp. 327-353.

[13] B. B. Kristensen, O. L. Madsen, B. Moller-Pedersen, and K. Nygaard, "The
Beta Programming Language," in Research Directions in Object-Oriented
Programming: MIT Press, 1987, pp. 7-48.

[14] B. Liskov and J. M. Wing, "A Behavioral Notion of Subtyping," ACM
Transactions on Programming Languages and Systems, vol. 16, no. 6, pp.
1811-1841, 1994.

[15] B. Meyer, Eiffel: the Language. New York: Prentice-Hall , 1992.
[16] M. Mezini, "Dynamic Object Evolution without Name Colli sions," ECOOP

'97, 1997, Springer Verlag, LNCS, vol. 1241, pp. 190-219.
[17] K. Ostermann and M. Mezini, "Object-Oriented Composition Untangled,"

OOPSLA '01, Tampa, Florida, 2001, ACM SIGPLAN Notices, vol. 36, no.
11, pp. 283-299.

[18] D. L. Parnas, "On the Criteria To Be Used in Decomposing Systems into
Modules," Communications of the ACM, vol. 15, no. 12, pp. 1053-1058,
1972.

[19] G. A. Pascoe, "Encapsulators: A New Software Paradigm in Smalltalk-80,"
OOPSLA '86, 1986, pp. 341-346.

[20] O. Spinczyk, A. Gal, and W. Schröder-Preikschat, "AspectC++: An Aspect-
Oriented Extension to the C++ Programming Language," 40th International
Conference on Technology of Object-Oriented Languages and Systems
(TOOLS Pacific 2002), Sydney, Australia, 2002, Conferences in Research
and Practice in Information Technology, vol. 10, pp. 53 - 60.

[21] J. Welsh and D. W. Bustard, "Pascal-Plus - Another Language for Modular
Multiprogramming," Software-Practice and Experience9, pp. 947-957, 1979.

