
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5, No. 2, March–April 2006

Cite this column as follows: J. Leslie Keedy, K. Espenlaub, C. Heinlein, G. Menger, F. Henskens, M.
Hannaford: “Support for Object Oriented Transactions in Timor”, in Journal of Object Technology, vol. 5,
no. 2, March-April 2006, pp. 103-124 http://www.jot.fm/issues/issue_2006_03/article1

Support for Object Oriented
Transactions in Timor

J. Leslie Keedy, Klaus Espenlaub, Christian Heinlein, Gisela Menger,
University of Ulm, Germany
Frans Henskens, Michael Hannaford, University of Newcastle, N.S.W.,
Australia

Abstract
An important aim in the design of the Timor programming language is to provide
programmers with features which enable them to build complex systems from
components which can be developed in isolation from each other (i.e. without
knowledge of each other's existence). The database transaction concept serves as an
interesting test case for this objective, since it is a general concept which can be applied
to many different applications. The paper discusses those features of Timor which allow
this objective to be achieved.

1 INTRODUCTION

The programming language Timor1 builds on the basic concepts of object orientation but
adds further features not commonly found in OO languages, including the separation of
types from their implementations and the separation of subtyping from code reuse. It also
adds two new kinds of types, known as qualifying types and attribute types, which allow
independent components to be defined and implemented for use in a manner similar to
the use of adjectives in natural languages. Just as adjectives are modular units which
modify and extend the meaning of nouns, so Timor's "adjectival" types allow the
behaviour of objects to be modified and extended in a modular fashion. The approach
differs fundamentally from the OO subclassing technique for extending classes in that the
adjectival types comprise separate units which can be independently applied to objects of
different types in a modular way.

The aim of this paper is to illustrate how qualifying types can be used to develop
advanced components which can add new "system" functionality to existing systems
without the latter's objects having to be modified in any way at all (i.e. neither at the

1 see www.timor-programming.org

SUPPORT FOR OBJECT ORIENTED TRANSACTIONS IN TIMOR

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

programming language source code level nor in terms of the intermediate or machine
code produced by the compiler), assuming that the original application system was
written in Timor. A knowledge of the basic paper on qualifying types [5] is assumed in
the rest of this paper.

Several cases of enhancing functionality in this sense have already been described in
earlier papers [4, 5], including the addition of synchronisation, monitoring and protection
to objects. In this paper we present more advanced features of Timor that make it possible
to develop components which for example can (a) allow copies of objects to be
automatically created and updated in parallel with the original objects in a system, and (b)
allow an existing system to be transformed into a transaction processing system in the
traditional database sense.

In line with the Timor design philosophy, the additional components developed to
achieve such aims must be type safe, both in the sense that they are themselves statically
type safe and in the sense that an application system into which such components have
been integrated remains type safe.

Two examples allow new constructs to be presented and discussed. The first of these
(section 2) illustrates how an existing application can be enhanced to allow a replica of
each object in an application to be maintained such that this is updated without the
knowledge or cooperation of either the client or the target objects involved. The second,
more ambitious, example (section 3) describes how an existing application can be
transformed into a transaction processing system, again in such a way that existing
objects are unaware of the additional functionality (such as creating and maintaining
shadow objects, committing and aborting transactions, etc.). Section 4 considers
protection and security issues which are raised by these examples, showing that the
owner of a system can prevent the additional components from violating the
confidentiality and/or integrity of the application objects. Section 5 discusses related
work and section 6 concludes the paper.

2 ACCESSING PARALLEL VERSIONS OF OBJECTS

This first example considers the case where an application system consists of a database
of objects which can be modified as the application proceeds. The aim is to enhance the
application such that whenever an object is modified a replica is automatically modified
in the same way (e.g. in a separate part of the disc store) so that in the case of failure
there is always a backup version of each object. To keep this first example relatively
simple, we assume that new objects are not dynamically created during the execution of
the application system2. Instead a program is developed which copies each object in turn
and acquires for each a Timor reference. This is a straightforward program which need
not be further discussed here.

What is now needed is a set of components which can in effect monitor the write
activities carried out on the original object database and surreptitiously make the same

2 In the next example it will be shown how duplicate objects can be dynamically created.

VOL. 5. NO. 2 JOURNAL OF OBJECT TECHNOLOGY 105

modifications to the replica database. In principle this is easily achieved using Timor
qualifiers (qualifying objects) with call-in bracket methods [5].

The type of such components might be defined along the following lines:

type ReplicaWriter {
maker:
 init(Handle aReplica);
qualifies any:
 enq bracket op (...) throws DynamicTypeErr;
}

where the maker (constructor) of a component receives as a parameter a reference for the
replica which it controls. The type also defines a bracket method which is responsible for
the actual updating of the replica.

Figure 1 illustrates in general how a bracket method of a qualifier can "catch"
method invocations from clients and then execute code, here as a prelude, i.e. before
executing a body statement (which causes the method originally invoked by the client to
be activated), and, after body completes, as a postlude.

Figure 1: Accessing a qualified Database Object

body

method
return

method
invocation Database

object
bracket
return

prelude
body

postlude

Client
object

Qualifying
object

i

Such a prelude can contain code which in appropriate circumstances modifies the
corresponding replica in the same way as the primary object is to be modified (see Figure
2).

Figure 2: Modifying the Replica Object

method
invocation

Database
object

bracket
return

Client
object

Replica
object

prelude
body

postlude

Qualifying
object

i

The key question is, how can this be achieved in a way which does not require the
programmer of the bracket method to know which individual methods of the database
object (and its replica) are writer methods, nor what types the database objects have?

SUPPORT FOR OBJECT ORIENTED TRANSACTIONS IN TIMOR

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

In Timor all the instance (and bracket) methods of all types must be categorised in
their type definitions either as operations, i.e. writer methods (keyword op), or as
enquiries, i.e. reader methods (keyword enq). The programmer of a qualifying type can
similarly declare bracket methods with the pseudo-identifiers op and/or enq, i.e. methods
for catching writer and/or reader invocations on an object's instance (and bracket)
methods3. Thus the programmer of a qualifying type does not need a knowledge of the
particular types or methods of target objects in order to determine which of their instance
methods modify objects.

The next issue is that of the type of the database object and its replica. This can be
resolved in that the qualifier receives as a parameter to its own maker a reference for the
replica, defined as having the type Handle (the supertype of all reference types), so that
a reference of any type can be passed in this parameter. But how then can the
programmer be sure that this is actually the same dynamic type as that of the database
object?

A pseudo-type, called TargetType, can be used in bracket methods; this represents
the dynamic type of the current target object (here the type of the database object). The
programmer can use this in a cast statement to ensure that the handle which has been
passed for the replica actually has the same dynamic type as the target object, e.g.

impl ReplicaWriterImpl of ReplicaWriter {
state:
 Handle theReplica;
maker:
 init(Handle aReplica) {theReplica = aReplica;}
qualifies any:
 enq bracket op (...) throws WrongTargetType {
 cast (theReplica) as {
 (TargetType* myReplica) {/* the code for invoking the
 method of the replica, available here as myReplica */}
 }
 else throw new WrongTargetType.init();
 ...
 }

The next question is how the appropriate method of theReplica can actually be
invoked to update it (without needing a knowledge of its actual type or of the actual
method which the client has invoked on the database object which it replicates).

To answer this question we recall that the same problem exists in principle for the
bracket method's invocation of the database object itself. In that case the solution is of
course provided by the special Timor body statement which allows a bracket method to
pass on the client's method invocation to its intended target. This mechanism can also be
used to invoke other objects of the same dynamic type, such as the replica in the present

3 Notice that a bracket method which catches op methods might itself be declared as an enq (because it
does not change the state of the qualifier) and vice versa.

VOL. 5. NO. 2 JOURNAL OF OBJECT TECHNOLOGY 107

example. The redirection of the client's call to the replica is indicated by prefixing to it a
variable name (using the normal dot notation)

The only context in which this redirection facility can be used is within a clause of a
cast statement which casts to TargetType, in order to prevent unexpected run-time type
errors. Furthermore, such a clause can only appear within a bracket method, since in
Timor the same qualifier can be used concurrently to qualify different target objects; only
when a bracket method is active the target – and therefore its type – is actually known.
The bracket method can be written as follows:

qualifies any:
enq bracket op (...)
 throws WrongTargetType, ReplicaAccessErr {
 cast (theReplica) as {
 (TargetType* myReplica) {
 try { myReplica.body(...); }
 catch (Exception e) {throw new ReplicaAccessErr.init(e);}
 }
 else throw new WrongTargetType.init();
 }
 return body(...); // call the database object
}

An attempt to invoke the replica directly in the form theReplica.body(...) would
result in a compile time error, even within the appropriate clause of the cast statement,
since the compiler cannot guarantee (either inside or outside the cast clause) that a new
object is not assigned to theReplica, and such an assignment could result in it having a
type other than TargetType (because it is declared as a handle). However, the auxiliary
variable used within a cast declaration (here myReplica) is always implicitly defined to
be fixed (for a reference) or final (for a value).

Finally there remains a protection issue. As the example stands, the writer of the
qualifying type could take advantage of the handle passed into its maker to access
arbitrary methods of the replica and thus violate the integrity and/or confidentiality of the
object. (In order to achieve this a cast statement in which the programmer guesses the
type would be necessary, but this possibility cannot be excluded.) We will consider this
issue later.

This example has illustrated for a relatively straightforward case how Timor can be
used to develop new components which add "system" functionality to an existing
application system. In the next section we explore a more ambitious example: enhancing
an existing system to transform it into a transaction system.

SUPPORT FOR OBJECT ORIENTED TRANSACTIONS IN TIMOR

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

3 ADDING TRANSACTIONS TO A SYSTEM

The transaction concept is based on the four ACID properties: atomicity, consistency,
isolation and durability [2]. The effects of implementing transactions with these
properties are that (a) each transaction is regarded as an atomic action in the sense that it
either executes to completion or it has no effect on the state of the system, (b) the
database is left in a consistent state after the completion of each transaction, (c)
transactions which execute in parallel are logically isolated from each other, and (d) after
a transaction completes successfully its effects on the database are durable. As we do not
- in this context - want to embark on a discussion of durability (and the related concept of
persistence) we regard this property as having been fulfilled if changes to the object
database made by committed transactions are recorded in the objects themselves.

We assume that an application system which is to be enhanced by the transaction
components presented in this section consists of a number of Timor objects (which can
have different types) that can be visited by processes/threads which make method calls on
the objects. If the system to be enhanced is already a concurrent one, we assume further
that its previous synchronisation requirements were satisfied by the use of dynamic
synchronising qualifiers along the lines described in [4], and that when the system is
transformed into a transaction system these are removed from the objects which they
qualify by deleting them from the qualifier lists of target objects (as described in [5]). The
transaction components which we now present can thus take over the responsibility for
synchronisation (as part of their function of achieving atomicity, consistency and
isolation) without side effects occurring from an earlier synchronisation strategy. (Since
the actual synchronisation details of a transaction system depend on the strategy adopted,
synchronisation will be assumed but not coded in this example.)

Architecture of the Transaction Components

The proposed transaction management system has the following major components:
• a single global transaction manager object,
• a separate qualifier for each database object, known as an object manager and
• threads in which the transactions are executed.

The global transaction manager object, of type TrxManager, implements decisions by
the application to begin, commit and abort transactions. It maintains a global overview of
the identities and progress of individual transactions as they access the application
objects, and organises commit/abort decisions at the object level. This object is a
"normal" Timor object, i.e. it is not a qualifier.

Each application object which can participate in transactions has its own associated
object manager. This is a qualifier, of type ObjectManager, which has separate call-in
bracket methods for controlling op and enq invocations of the target. These determine
whether and how an individual transaction can access its associated target. They advise
the global transaction manager whenever a thread touches its associated target object, and
this then returns the identity of the transaction associated with the thread. In addition each

VOL. 5. NO. 2 JOURNAL OF OBJECT TECHNOLOGY 109

object manager has normal instance methods which the global transaction manager can
invoke to advise it to commit/abort changes associated with its individual object.

Each transaction has a separate identity and executes in one or more threads of an
application system. A thread remains associated with the same transaction until the latter
completes, i.e. it can only be reused after the transaction with which it is associated either
commits or aborts. At any given point in time there is a unique mapping from a thread
number to a transaction number, but over the life of the system different transactions may
be mapped to the same thread number(s).

This basic architecture is independent of the actual strategy adopted in a particular
transaction management system (e.g. whether the approach is optimistic or pessimistic,
whether before or after looks are used, etc.). It is not our aim to define a specific
transaction system but to consider whether and how Timor can handle the basic
mechanisms needed to implement such a system.

The Global Transaction Manager

The global transaction manager provides the application system with an interface via
which transactions can be begun, committed and aborted. It also allows the object
managers for the individual target objects to ascertain whether invocations of methods of
the individual target objects are from registered transactions. There is one instance of this
type per transaction system. It is used by a new application component which is
responsible for scheduling transactions, known here as the transaction scheduler, which
is not further described.

The main functions of an object of the type transaction manager (TrxManager) are
to:

• allocate a transaction identifier for each new transaction,
• allow object managers to check whether a call to a target is from a registered

transaction,
• determine whether a transaction can commit or must abort.

How it achieves these aims depends on the implementation strategy. Because in Timor a
type can have multiple implementations, it is possible to envisage different
implementations of the following types which embody different strategies.

Here is an outline type definition for a transaction manager:

type TrxManager {
instance:
 op TrxId beginTrx();
 /* The application's transaction scheduler invokes this
 operation when a transaction is initiated. It
 - allocates a unique trx id,
 - returns the trx id to the caller
 */
 op boolean commitTrx(TrxId trx) throws InvalidTransaction;
 /* This operation is invoked by the application transaction

SUPPORT FOR OBJECT ORIENTED TRANSACTIONS IN TIMOR

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

 scheduler when a transaction completes. The TrxManager
assesses whether the trx can commit (involving, for
example, messages in the case of distributed
transactions or validation in the case of optimistic
transactions), and if so advises each object manager
which has an object that has been touched by the
transaction to commit.

 If the trx cannot commit (e.g. due to conflicts between
 transactions), the TrxManager aborts the trx.
 The return value indicates whether the transaction
 was committed (true) or aborted (false)
 */
 op void abortTrx(TrxId trxId) throws InvalidTransaction;
 /* This operation is invoked from the application
 transaction scheduler when a transaction has to abort.
 It advises each object manager which has an object that
 has been touched by the transaction to abort.
 */
 op TrxId trxNumber(AccessMode ac; Handle target;
 ObjectManager* objMgr);
 /* This method, called by object managers when
 their bracket methods detect an access to a target,
 - validates that the current thread belongs to a
 transaction,
 - notes for internal use the access mode parameter
 and the reference for the affected target object,
 - records the reference to the calling object manager
 for use later to advise the object manager to make a
 local commit or abort,
 - returns the trx id of the transaction (null = invalid)
 */
}

Object Managers

The type ObjectManager is designed as a general qualifying type, i.e. it can qualify
targets of different types in a general way, without a knowledge of the target type or its
methods. When a writer method of a target is invoked, an op call-in bracket method of
the associated object manager is activated. When a reader method is invoked, an enq
call-in bracket method of the object manager is activated.
The main functions of the ObjectManager are:

• using bracket methods, to monitor reader and writer calls on the target object.
This involves
- checking whether calls on the target object belong to a registered transaction

(by referring to the global transaction manager) and if not, rejecting them;
- where appropriate making a shadow copy of the target for use by a

transaction;
- where appropriate redirecting calls to the appropriate shadow.

VOL. 5. NO. 2 JOURNAL OF OBJECT TECHNOLOGY 111

• when advised by the transaction manager via an instance method, either
- to commit the changes for a transaction, or
- to abort the changes
and to remove any shadow.

The use of general bracket methods guarantees that different code does not have to be
written to control different target types, and ensures that the same transaction
management code can be re-used in different transaction systems.

Here is a type definition for an object manager.

type ObjectManager {
qualifies any:
 op bracket op(...) throws TransactionError;
 /* This bracket method catches writer calls. Inter alia it
 refers to the TrxManager to obtain the trx id of the
 current thread, advising the Transaction Manager that
 the access mode = WRITE.
 If the thread does not belong to a registered trx,
 the exception TransactionError is thrown
 Depending on the implementation strategy this bracket
 method may make a shadow copy of its object, to which
 application calls to the target may be redirected.
 */
 op bracket enq(...) throws TransactionError;
 /* This bracket method catches reader calls. Inter alia it
 refers to the TrxManager to obtain the trx id of the
 current thread, advising the Transaction Manager that
 the access mode = READ.
 If the thread does not belong to a registered trx,
 the exception TransactionError is thrown
 Depending on the implementation strategy this bracket
 method may make a shadow copy of its object, to which
 application calls to the target may be redirected.
 */
instance:
 op void localCommit(TrxId trxId);
 /* This instance method, called by the TrxManager, commits
 the trx from the viewpoint of its target object.
 This may involve
 - copying its shadow values to the target,
 - removing the shadow from a shadow set.
 */
 op void localAbort(TrxId trxId);
 /* This instance method, called by the TrxManager, aborts
 the trx from the viewpoint of its target object.

This may involve, for example,
 - removing the shadow from the shadow set and/or
 - releasing locks held on the target object.

 */

SUPPORT FOR OBJECT ORIENTED TRANSACTIONS IN TIMOR

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

maker:
 init(TrxManager* trxMan);
 /* The reference for the global transaction manager, allows
 it to call the method trxNumber.
 */
}

In implementations of the object manager there are certain activities which are especially
relevant for the current investigation. They may need the ability:

a) unambiguously to identify both the current target object and the client's mode of
access (read or write) to the target, in order to pass this information as parameters
to the global transaction manager 's method

op TrxId trxNumber(AccessMode ac; Handle target;
 ObjectManager* objMgr);

b) to create shadow copies of a target object and to redirect the invocations of the

controlled objects by transactions to these shadows.
c) to copy the content of a dynamically created shadow object back to the target (on

a commit operation).
These objectives must be achieved in such a way that the code involved can be written
without an awareness of the types involved. We consider these points in turn.

Identifying a Target and the Access Mode to the Target

Identifying the access mode to the target object (i.e. whether the method invocation is a
reader or writer call) is easily distinguished in Timor. Method calls caught by the op
bracket method are writers, while those caught by the enq bracket method are readers.

The type ObjectManager could have been designed with a maker which receives a
handle for the target object. However, this would not guarantee that an actual reference
passed in is actually for the target object. Instead the object manager can obtain a
reference for its target object via a pseudo reference target, which of course has the
type TargetType. In this sense the body statement of Timor, when used in isolation - as
in earlier papers on qualifying types and bracket methods (e.g. [4, 5]) – can be viewed as
a convenient short form for target.body(...).

This mechanism enables object managers to invoke the global transaction manager
from within the enq bracket method as:

trxMan.trxNumber(READ, target, this);

and from the op bracket method as:

trxMan.trxNumber(WRITE, target, this);

A protection issue similar to that mentioned in section 2 arises. In this case the
programmer of the qualifying type could take advantage of the pseudo reference target

VOL. 5. NO. 2 JOURNAL OF OBJECT TECHNOLOGY 113

to access arbitrary methods of the target object and thus violate the integrity and/or
confidentiality of the object. We return to this issue in section 4.

Creating Shadow Objects and Redirecting Method Calls to Them

In contrast with the example in section 2, a handle for a shadow object is not passed in
via a maker. Instead the qualifier must dynamically create a shadow as a copy of the
target object whenever one is needed. This can be achieved as follows:

state:
 Handle theShadow;
qualifies any:
 op bracket op(...) throws TransactionError {
 if (/* first access by the current transaction */)
 theShadow = new *target;
 ...
 }

Here a single shadow object is declared as a handle in the object manager's state
section. (In implementations of some transaction strategies a set of shadows, e.g. one per
transaction, might be necessary, but a single shadow is sufficient to illustrate the Timor
features of relevance to our discussion.)

The statement used to instantiate an actual shadow object which is an exact copy of
the target object (theShadow = new *target;) has the following semantics.

The dereferencing operator (*) copies the value of the target object, accessed via the
special target reference mentioned above, and returns this value. The standard
functionality of the new operator in Timor is that it accepts any value (here a copy of the
target) as its operand, and transforms this into a new object, creating a reference for it.
The assignment operator then copies this reference to the reference variable (in this case
theShadow). Notice that static type checking is here not a problem, as theShadow is a
handle, and can therefore accept a reference of any type, regardless of the actual type of
the target and therefore of the shadow copied from the target.

As in the replica example in section 2, invocations of the target object’s methods can
be redirected to the shadow object using a cast statement:

cast (theShadow) as {
 (TargetType* myShadow) {
 try { return myShadow.body(); }
 catch (Exception e) {throw new AccessErr.init();}
 }
}

In appropriate cases the bracket method redirects the client's target method invocation to
the shadow object (in this case without calling the target) and returns the result to the
caller.

SUPPORT FOR OBJECT ORIENTED TRANSACTIONS IN TIMOR

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

Copying the Content of a Shadow Object back to the Target

At this point it might be thought that all the key issues have been resolved. However, the
qualifier must be in a position to copy the content of a shadow object back to the target
object when a transaction commits. (The shadow cannot simply be used as a replacement
for the target, as application components may have references to the original target.)
There are two significant differences between this and the earlier copying of the content
of a target object to a shadow. First the copying is to an existing object (i.e. the new
statement is not relevant here). Second, the copy operation occurs in a normal instance
method of the qualifier (e.g. the commit operation), not in a bracket method.

The second point is relevant because it means that neither the type TargetType nor
the special reference target can be used, i.e. a statement such as

*target = *theShadow;

is not allowed in an instance method, because the pseudo reference target can only be
used in bracket methods.

To circumvent this problem, the programmer can assign the target to a handle at the
point where a shadow object is created, i.e. in the bracket method. Provided the handle is
declared as a state variable it can then be used in normal instance methods, as the
following code illustrates:

state:
 Handle theTarget, theShadow;
qualifies any:
 op bracket op(...) throws TransactionError {
 if (/* first access by the current transaction */)
 theTarget = target;
 theShadow = new *target;
 ...
 }

At this point the state of the Object Manager contains a reference pointing to the target
object and a further reference pointing to the new shadow object, the content of which is
a copy of the target object.

In the localCommit instance method a statement such as
*theTarget = *theShadow;

is now in principle possible, but this must appear in a context where the compiler can
check the types, i.e. in a cast statement. However TargetType cannot be used outside
bracket methods because general purpose qualifiers can (even concurrently) qualify
targets of different types (see [5]), so that outside a bracket method TargetType is
ambiguous.

However, a different Timor concept can be used to solve this problem. The crucial
issue is not that the compiler needs to know both types involved, but rather that it can be
sure they have the same type. To resolve such problems Timor supports a special type
called SameAs, for use in the declaration part of cast clauses. This allows the compiler to

VOL. 5. NO. 2 JOURNAL OF OBJECT TECHNOLOGY 115

check that the dynamic types of the subject variable and that of another variable are
identical. During the execution of the corresponding cast clause not only the subject
reference (here thisShadow) but also the reference with which it is to be compared must
be fixed, i.e. new assignments cannot be made to them (although the contents of the
objects to which they refer can be changed). As mentioned earlier, an auxiliary reference
used within a cast declaration (here thisShadow) is always implicitly defined to be
fixed (for a reference). A separate auxiliary reference can be used to fix the target object
reference, as follows:

fixed Handle thisTarget = theTarget;
cast (theShadow) as {
 (SameAs thisTarget thisShadow) {*thisTarget = *thisShadow;}
else throw new TransactionError.init();
}

If the programmer were to attempt to make an assignment such as *theTarget =
*theShadow either inside or outside the cast statement a compile time type error would
occur, because both are just handles.

Normally cast statement clauses are matched polymorphically with the variable
which is the subject of the cast (e.g. a (Person p) {...} clause would be selected
where the subject of the cast is a Student reference, assuming that Student is a
subtype of Person). However, the SameAs clause makes an exact type check, giving the
programmer the opportunity to use cast statements to check dynamic types exactly.

4 PROTECTING TARGETS FROM QUALIFIERS

In this section we consider how Timor can be used to prevent qualifiers from breaching
the security of their targets (and any shadow objects which are copies of the targets). As a
preliminary we briefly describe relevant aspects of Timor's view construct.

Views

A view defines a group of related instance methods which can typically be incorporated
into many types, and its primary purpose is to encourage the idea of programming to
interfaces. Here is a simple example:

SUPPORT FOR OBJECT ORIENTED TRANSACTIONS IN TIMOR

116 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

enum Openmode {CLOSED, READ, WRITE}
view Openable {
 op void open(Openmode mode) throws OpenError;
 op void close() throws NotOpen;
 enq Openmode openMode(); // returns current open mode
}

A reference variable can have a view as its type, thus allowing objects of different types
which contain the view methods to be used polymorphically. Hence objects of any
"openable" type can be assigned to a reference

Openable* openRef;

and the Openable methods can be invoked via it.

Restricting Access to Objects

The pseudo reference target, as described in section 3, apparently gives any bracket
method the right to invoke methods of its target object. This would potentially provide a
mechanism by which programmers could violate both the integrity of the target (by
invoking its op methods) and its confidentiality (by invoking its enq methods). The same
threats also arise through the passing in of a replica via a handle in the replica writer
example in section 2.

Timor supports a simple mechanism which the programmer can use to prevent such
breaches. Any reference variable declaration, including that for a handle, can be restricted
in a manner analogous to the mechanisms for restricting access via capabilities in
operating systems. This is achieved syntactically by listing in special brackets ([: and
:])a set of access permissions after the type of the reference. Each permission can be
expressed as a view.

Given the above definition of Openable and an object of type File, which includes
the above methods open, close and openMode (regardless whether they were explicitly
incorporated as a view in the original type definition or were defined as normal methods
of the type), access via the following reference variable fileRef would allow only these
methods to be accessed.

File*[:Openable:] fileRef;

Such a reference is called a restricted reference. Downcasts cannot be performed on
restricted references.

The difference between fileRef and openRef is that any object of any type which
incorporates the view Openable can be assigned to openRef, as for normal subtyping,
whereas objects only of the type File (and its behavioural subtypes) can be assigned to
fileRef and only the methods of Openable can be called via this reference. Hence this
mechanism is more restrictive than normal subtyping.

The set of permissions are defined using the same set syntax as is used for defining
subsets in the Timor Collection Library. The operators are + (union), - (difference), *
(intersection).

VOL. 5. NO. 2 JOURNAL OF OBJECT TECHNOLOGY 117

The rule for assigning objects to restricted references defines that the methods
invocable from the restricted reference must be a subset of those invocable via the
reference from which the assignment is made. Hence access can be reduced but not
increased by using different variables or by passing parameters.

The relevance of this mechanism to the problem at hand is that there are also certain
predefined views, including op, enq, and body. These restrict the use of a reference
variable to allowing only calls to writer methods, to reader methods, or to a single
invocation of body (only within a bracket method).

Target References and the Body Permission

To solve the problems outlined above with respect to the replica writer example, the
body permission can be used as follows:

state:
 Handle[:body:] theReplica;
maker:
 init(Handle[:body:] aReplica) {theReplica = aReplica;}
qualifies any:
enq bracket op (...)
 throws DynamicTypeErr, ReplicaAccessErr {
 cast (theReplica) as {
 (TargetType[:body:]* myReplica) {
 try { myReplica.body(...); }
 catch (Exception e) {throw new ReplicaAccessErr.init();}
 }
 else throw new DynamicTypeErr.init();
 }
 return body(...); // call the database object
}

Here the reference for passing in the (already existing) replica is restricted to one
invocation of body(...) per activation of a bracket method. Other methods cannot be
called at all. The restriction that body(...) can be invoked once only in the activation
of a bracket method is a general restriction, i.e. although a body statement for a particular
target can appear statically at different points in a bracket method, only one dynamic
execution is permitted. This is important to ensure that repeated activations of
body(...) cannot be used to violate the integrity of the target object in the form of a
replay attack.

In the replica writer example the body permission is visible to the client who creates
a qualifier, via the maker parameter. Since this guarantees that the object which he passes
in can subsequently be further assigned only to references also restricted to a single body
invocation, the client (who associates the qualifier with his target object) can be sure that
no other methods of the target are invoked by the qualifier and that for any bracket
method activation only a single invocation of body(...) is permitted.

SUPPORT FOR OBJECT ORIENTED TRANSACTIONS IN TIMOR

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

Restrictions on the Use of Target

The transaction processing example introduces the pseudo reference target. It is also
essential that the instance methods of the target object cannot be invoked via this pseudo
reference. This is guaranteed by the fact that target is itself restricted to a body
permission, i.e. its implicit definition is:

TargetType[:body:]* target;

Copying Objects

The remaining issues in the transaction processing example are concerned with misusing
the shadow. Shadow objects are not passed in as parameters and therefore cannot be
restricted by clients passing in a restricted reference, in contrast with the replica example.
The key issue here is that a shadow object is created by copying the content of target,
i.e.

theShadow = new *target;

The solution is therefore self evident. The rule that an object can only be assigned to a
reference which is at least as restricted as the reference which is the source of the
assignment is extended to apply to copies of objects. In other words, because target is
accessed via a reference with only a body permission, a copy can only be assigned to a
references which has at most the body reference permission. Hence the above assignment
will fail unless theShadow is declared as:

state:
 Handle[:body:] theShadow;

Corresponding changes must then also be made to the code. In the bracket methods the
following modification is required for the cast statement:

cast (theShadow) as {
 (TargetType[:body:]* myShadow) {
 try { return myShadow.body(...); }
 catch (Exception e) {throw new AccessErr.init();}
}

In the local commit method the statement

cast (theShadow) as {
 (SameAs theTarget thisShadow) {*theTarget = *thisShadow;}
}
else throw new TransactionError.init();

remains unchanged, since SameAs checks the exact type.

VOL. 5. NO. 2 JOURNAL OF OBJECT TECHNOLOGY 119

Confining Objects

Although the measures described earlier in this section are thought to be sufficient to
prevent the flow of information from a target via a qualifier to an unauthorised third
party, the owner of a target, when he creates the transaction qualifiers, can qualify these
with further qualifiers which have call-out brackets designed to confine information
which the transaction qualifiers attempt to release to other components [6].

Such brackets could prevent invocations of any methods except calls from an object
manager to the global transaction manager's trxNumber method. This releases
references for both the object manager itself and for its target. However, the target
reference is needed only for identification purposes and should never be called by the
transaction manager. This can be guaranteed by defining trxNumber to have a restricted
reference as its parameter, i.e. Handle[: :] target. This empty set restriction
indicates that no methods can be called via this reference.

The reference for the object manager, on the other hand, is needed by the transaction
manager to invoke the former's commit and abort methods and so cannot be completely
restricted. In this case the restriction must be to a view which permits these calls, e.g.

view TrxFinalisation {
 op void localCommit(TrxId trxId);
 op void localAbort(TrxId trxId);
}

These restrictions are reflected in the following redefinition:

op TrxId trxNumber(AccessMode ac; Handle[: :] target;
 ObjectManager[:TrxFinalisation:]* objMgr);

Copying Objects with Qualifiers

When an object is copied, as in the statement

theShadow = new *theObject;

the dynamic qualifiers in the qualifier list [5] of the original object are not automatically
associated with the new object, neither in their original form nor as copies. However,
dynamic qualifiers can be associated with a new object as it is created, e.g. in a literal
qualifier list or they can even be added later, if a named list is used. For example the
above statement might be modified to read:

theShadow = new {qualifier1, qualifier2} *theObject;

In this case two qualifiers (which might or might not also be in the list of the original
object), are associated with the new object.

SUPPORT FOR OBJECT ORIENTED TRANSACTIONS IN TIMOR

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

If an object is defined (at the type level) to have static qualifiers [7] these are
considered to be an integral part of the object and are automatically copied as part of an
object which is copied, i.e. they are part of the value returned by the dereferencing
operator *.

Preventing the Copying of Objects

The use of the dereferencing operator to copy objects can itself in principle present a
threat to the confidentiality of an object. Suppose for example that an object is protected
by a qualifier which contains an access control list (ACL) [9], it might appear possible to
circumvent this protection by copying the object and then accessing its information as
stored in the copy.

However, this situation can be prevented by the use of bracket methods. When a
dereferencing operator occurs on the left side of an assignment statement it indicates that
the object's value will be overwritten by the value of some other object of the same type.
Just as general bracket methods can be defined as op and enq brackets (to monitor
operations and enquiries), so also a bracket method overwrite can be defined which
monitors overwriting (and if appropriate prevents this by not calling the body statement).
Similarly a copy bracket method can be defined to monitor and potentially prevent the
use of dereferencing on the right side of an assignment statement or more generally in an
expression. If overwrite and/or copy bracket methods are not defined, then op and/or
enq brackets (if they exist) are applied to dereferencing operations.

Preventing the overwriting or copying of objects can also be achieved by references
which restrict the use of these operations (e.g. Handle[:all-overwrite:]).

5 RELATED WORK

To our knowledge the only other work which is closely related to the programming
language concepts described in the present paper is that being carried out in the aspect
oriented programming (AOP) community.

Timor's qualifying types can be seen as a technique for defining and implementing
aspects, but in contrast with languages such as AspectJ [8] and AspectC++ [11] it
supports various features which make it particularly suitable for supporting transactions
and similar "system oriented" activities. These include the ability:

• to distinguish between reader and writer methods without needing to resort to
special naming conventions and pattern matching,

• flexibly to associate qualifiers with individual objects rather than associating them
statically with a class,

• dynamically to add qualifiers to and remove them from existing objects [5],
• to associate the same qualifier with a group of objects rather than with a single

object or with all objects of a class,

VOL. 5. NO. 2 JOURNAL OF OBJECT TECHNOLOGY 121

• to define aspects without a knowledge of, or a need to modify the code of, a target
(at any level, whether in the source, intermediate code or compiled code), i.e.
without the need to define "pointcuts",

• to define aspects without a knowledge of each other, even in cases where
precedence is considered to be relevant,

• to define general qualifying types and specialised types based on view interfaces
without a knowledge of (nor the presence at compile time of) each other's source
or bytecode or that of types which they might qualify,

• to introduce new methods ("introduction" in AOP terminology) without these
becoming methods of the qualified objects (important for example where the
qualifier controls protection, so that the client cannot change the protection
conditions).

Recent AOP developments, the so called "second generation" AOP projects, e.g. [1, 3],
have addressed some of these issues. In particular criticisms of the static approach of
AspectJ have led to a more dynamic approach, as exemplified by JBoss [3]. This frees
aspects from being bound to types, allowing advice to be dynamically associated with
and removed from individual objects. This is achieved by binding advice to method calls
using XML. In this way, methods can be either directly bound to aspect advice or can be
"prepared" for such advice (the more dynamic case), and advice can be instantiated and
then attached to advised objects as appropriate. While this approach is certainly more
flexible than AspectJ through its more dynamic features, it still resorts to the use of a
second language level (XML) to associate aspects with objects. This is fundamentally
different from Timor, where "aspects" (qualifiers) are completely defined in terms of the
normal features of the languages and can (with complete flexibility) be added to and
removed from individual objects simply by manipulating a normal Timor list associated
with the object, which is itself a first class element of the language.

Finally middleware has been claimed to be the "killer application" for AOP:
"Much application-server functionality can be cleanly and logically expressed as

aspects. Context passing, remoting, security and transactions can be thought of as add-on
functionality that happens 'around' (before and/or after) a method call to an ordinary
object. Aspect-oriented programming allows an application server designer to provide
these features without requiring service developers to extend abstract classes or
implement interfaces" [10].

In the present paper we have demonstrated how transactions can be supported in
Timor using qualifying types (the Timor equivalent to aspects). In earlier papers we have
also shown how qualifying types can play a significant role in improving security. But we
are not convinced that they will in future have a significant role to play in "remoting"
(remote procedure calls), or in implementing persistence (which is added to the list in
another part of the same paper). In the context of Java this claim makes sense because
remote procedure calls and persistence are not fundamental features of the Java language,
and so must be treated as add-ons. But Timor, as a new language, presupposes a
fundamentally different model, in which both remote procedure calls and persistence are
basic architectural concepts. Hence they do not need to be provided as add-ons, and

SUPPORT FOR OBJECT ORIENTED TRANSACTIONS IN TIMOR

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

consequently qualifiers have no role to play in their implementation. This is the subject of
a paper currently in preparation.

Finally, it is not clear to us how the AOP approach can provide a level of protection
approaching that described in section 4, whereby the integrity and confidentiality of an
application can be safeguarded from components developed to provide a transaction
processing environment (or other separately coded aspects).

6 CONCLUSION

The paper has demonstrated how Timor can employ qualifying types to handle a certain
class of "system" issues, including the maintenance of replicas and support for
transactions in the traditional database sense. It has also demonstrated how target objects
can be protected from wayward qualifiers. Perhaps its most interesting contributions in
terms of the technicalities of qualifying types are (a) the idea that the language provides
(restricted) access both to the target object itself (using the keyword target) and to the
type of the target (using the keyword TargetType), and (b) that invocations of a target
can be deflected by bracket methods to replicas/shadow objects.

The effect of these features is that a well-structured Timor application system which
was not originally designed to work in transaction mode can be updated to a transaction
system by introducing autonomous components. These new components can be designed,
developed and implemented completely independently of individual application systems
and without changing the code (at any level) of the application objects on which
transactions are carried out. Thus a generic set of transaction components can be
developed and then applied to a wide range of disparate existing applications.
Furthermore different transaction strategies (e.g. optimistic, pessimistic) can be supplied
in alternative implementations of the component types.

Finally transactions have been used in this paper as a demonstration of the flexibility
just described. But this flexibility can equally easily be applied to the retrofitting of other
kinds of requirements, such as security, monitoring, protection and so on.

VOL. 5. NO. 2 JOURNAL OF OBJECT TECHNOLOGY 123

REFERENCES

[1] CollabNet, "dynaop," https://dynaop.dev.java.net/, 2004.

[2] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques.
San Fransisco. Morgan Kaufmann, 1993.

[3] JBoss, "JBoss Aspect Oriented Programming," http://www.jboss.org/
developers/projects/jboss/aop, 2004

[4] J. L. Keedy, G. Menger, C. Heinlein, and F. Henskens, "Qualifying Types
Illustrated by Synchronisation Examples," in Objects, Components,
Architectures, Services and Applications for a Networked World, Interna-
tional Conference NetObjectDays, NODe2002, Erfurt Germany, vol. LNCS
2591, M. Aksit, M. Mezini and R. Unland, Eds.:Springer 2003, pp. 330-344,
http://link.springer.de/link/service/series/0558/papers/2591/25910330.pdf

[5] J. L. Keedy, K. Espenlaub, G. Menger, and C. Heinlein, "Qualifying Types
with Bracket Methods in Timor," Journal of Object Technology, vol. 3, no. 1,
Jan.-Feb 2004, pp. 101-121, http://www.jot.fm/issues/issue_2004_01/article1.

[6] J. L. Keedy, K. Espenlaub, G. Menger, and C. Heinlein, "Call-out Bracket
Methods in Timor," vol. 5, no. 1, January-February 2006, pp 51-67,
http://www.jot.fm/issues/issue_2006_01/article1.

[7] J. L. Keedy, K. Espenlaub, G. Menger, C. Heinlein, and M. Evered,
"Statically Qualified Types in Timor," Journal of Object Technology, vol. 4,
no. 7, 2005, pp. 115-137, http://www.jot.fm/issues/issue_2005_09/article5.

[8] G. Kiczales, E. Hilsdale, J. Hugonin, M. Kersten, J. Palm, and W. G.
Griswold, "An Overview of AspectJ," ECOOP 2001 - Object-Oriented
Programming, 2001, Springer Verlag, LNCS, vol. 2072, pp. 327-353.

[9] B. W. Lampson, "Protection," Proc. 5th Princeton Symposium on Information
Sciences and Systems, 1971

[10] D. Schweisguth, "Second-generation aspect-oriented programming,"
Javaworld, http://www.javaworld.com/javaworld/jw-07-2004/jw-0705-aop-
p3.html, July, 2004.

[11] O. Spinczyk, A. Gal, and W. Schröder-Preikschat, "AspectC++: An Aspect-
Oriented Extension to the C++ Programming Language," 40th International
Conference on Technology of Object-Oriented Languages and Systems
(TOOLS Pacific 2002), Sydney, Australia, 2002, Conferences in Research
and Practice in Information Technology, vol. 10, pp. 53 - 60.

http://www.javaworld.com/javaworld/jw-07-2004/jw-0705-aop-p3.html
http://www.javaworld.com/javaworld/jw-07-2004/jw-0705-aop-p3.html

SUPPORT FOR OBJECT ORIENTED TRANSACTIONS IN TIMOR

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

About the authors

J. Leslie Keedy recently retired from the position of Professor and
Head, Department of Computer Structures, University of Ulm,
Germany, where he lead the Timor language design and the Speedos
operating system design groups. His email address is
keedy@jlkeedy.net. His biography can be visited at
http://www.jlkeedy.net/biography_short.php

Klaus Espenlaub completed his Ph.D. in Computer Science at the
University of Ulm in 2005. Currently he works as a research assistant
in the Department of Computer Structures at the University of Ulm.
His research interests include secure operating systems, protection
mechanisms and computer architecture. His email address is
klaus@espenlaub.com.

Christian Heinlein received a Ph.D. in Computer Science from the
University of Ulm in 2000. Currently, he works as a scientific
assistant in the Department of Computer Structures at the University
of Ulm. His research interests include programming language design
in general, especially genericity, extensibility and non-standard type
systems. His email address is christian.heinlein@uni-ulm.de.

Gisela Menger received a Ph.D. in Computer Science from the
University of Ulm in 2000. Currently she works as a scientific
assistant in the Department of Computer Structures at the University
of Ulm. Her research interests include programming language design
and software engineering. Her email address is gisela.menger@uni-
ulm.de.

Frans Henskens is Assistant Dean of the Faculty of Engineering &
Built Environment at the University of Newcastle, Australia. His
research interests centre on engineering of flexible software systems,
bioinformatics, computational neuroscience, distribution using global
virtual memory, programming language design, resilience and
availability in database systems and use of persistent stores for bulk
data storage and manipulation. His email address is
Frans.Henskens@newcastle.edu.au

Michael Hannaford is a Senior Lecturer in Computer Science and
Software Engineering at the University of Newcastle, Australia. His
research interests centre on virtual memory management, distributed
systems, programming language design, and object-oriented software
engineering. His email address is Mike.Hannaford@newcastle.edu.au

http://www.jlkeedy.net/biography_short.php
mailto:klaus@espenlaub.com
mailto:christian.heinlein@uni-ulm.de
mailto:gisela.menger@informatik.uni-ulm.de
mailto:menger@informatik.uni-ulm.de
mailto:mike.hannaford@newcastle.edu.au
mailto:frans.henskens@newcastle.edu.au
mailto:keedy@jlkeedy.net

VOL. 5. NO. 2 JOURNAL OF OBJECT TECHNOLOGY 125

