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Abstract 
An important aim in the design of the Timor programming language is to provide 
programmers with features which enable them to build complex systems from 
components which can be developed in isolation from each other (i.e. without 
knowledge of each other's existence). The database transaction concept serves as an 
interesting test case for this objective, since it is a general concept which can be applied 
to many different applications. The paper discusses those features of Timor which allow 
this objective to be achieved. 

1 INTRODUCTION 

The programming language Timor1 builds on the basic concepts of object orientation but 
adds further features not commonly found in OO languages, including the separation of 
types from their implementations and the separation of subtyping from code reuse. It also 
adds two new kinds of types, known as qualifying types and attribute types, which allow 
independent components to be defined and implemented for use in a manner similar to 
the use of adjectives in natural languages. Just as adjectives are modular units which 
modify and extend the meaning of nouns, so Timor's "adjectival" types allow the 
behaviour of objects to be modified and extended in a modular fashion. The approach 
differs fundamentally from the OO subclassing technique for extending classes in that the 
adjectival types comprise separate units which can be independently applied to objects of 
different types in a modular way. 

The aim of this paper is to illustrate how qualifying types can be used to develop 
advanced components which can add new "system" functionality to existing systems 
without the latter's objects having to be modified in any way at all (i.e. neither at the 

                                                           
1 see www.timor-programming.org
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programming language source code level nor in terms of the intermediate or machine 
code produced by the compiler), assuming that the original application system was 
written in Timor. A knowledge of the basic paper on qualifying types [5] is assumed in 
the rest of this paper. 

Several cases of enhancing functionality in this sense have already been described in 
earlier papers [4, 5], including the addition of synchronisation, monitoring and protection 
to objects. In this paper we present more advanced features of Timor that make it possible 
to develop components which for example can (a) allow copies of objects to be 
automatically created and updated in parallel with the original objects in a system, and (b) 
allow an existing system to be transformed into a transaction processing system in the 
traditional database sense. 

In line with the Timor design philosophy, the additional components developed to 
achieve such aims must be type safe, both in the sense that they are themselves statically 
type safe and in the sense that an application system into which such components have 
been integrated remains type safe. 

Two examples allow new constructs to be presented and discussed. The first of these 
(section 2) illustrates how an existing application can be enhanced to allow a replica of 
each object in an application to be maintained such that this is updated without the 
knowledge or cooperation of either the client or the target objects involved. The second, 
more ambitious, example (section 3) describes how an existing application can be 
transformed into a transaction processing system, again in such a way that existing 
objects are unaware of the additional functionality (such as creating and maintaining 
shadow objects, committing and aborting transactions, etc.). Section 4 considers 
protection and security issues which are raised by these examples, showing that the 
owner of a system can prevent the additional components from violating the 
confidentiality and/or integrity of the application objects. Section 5 discusses related 
work and section 6 concludes the paper. 

2 ACCESSING PARALLEL VERSIONS OF OBJECTS 

This first example considers the case where an application system consists of a database 
of objects which can be modified as the application proceeds. The aim is to enhance the 
application such that whenever an object is modified a replica is automatically modified 
in the same way (e.g. in a separate part of the disc store) so that in the case of failure 
there is always a backup version of each object. To keep this first example relatively 
simple, we assume that new objects are not dynamically created during the execution of 
the application system2. Instead a program is developed which copies each object in turn 
and acquires for each a Timor reference. This is a straightforward program which need 
not be further discussed here. 

What is now needed is a set of components which can in effect monitor the write 
activities carried out on the original object database and surreptitiously make the same 
                                                           
2 In the next example it will be shown how duplicate objects can be dynamically created. 
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modifications to the replica database. In principle this is easily achieved using Timor 
qualifiers (qualifying objects) with call-in bracket methods [5]. 

The type of such components might be defined along the following lines: 
 
type ReplicaWriter { 
maker: 
 init(Handle aReplica); 
qualifies any: 
 enq bracket op (...) throws DynamicTypeErr; 
} 
 

where the maker (constructor) of a component receives as a parameter a reference for the 
replica which it controls. The type also defines a bracket method which is responsible for 
the actual updating of the replica. 

Figure 1 illustrates in general how a bracket method of a qualifier can "catch" 
method invocations from clients and then execute code, here as a prelude, i.e. before 
executing a body statement (which causes the method originally invoked by the client to 
be activated), and, after body completes, as a postlude. 

 
 

Figure 1: Accessing a qualified Database Object 
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Such a prelude can contain code which in appropriate circumstances modifies the 
corresponding replica in the same way as the primary object is to be modified (see Figure  
2). 

 

Figure 2: Modifying the Replica Object 
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The key question is, how can this be achieved in a way which does not require the 
programmer of the bracket method to know which individual methods of the database 
object (and its replica) are writer methods, nor what types the database objects have? 



 
SUPPORT FOR OBJECT ORIENTED TRANSACTIONS IN TIMOR 

 
 
 

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2 

In Timor all the instance (and bracket) methods of all types must be categorised in 
their type definitions either as operations, i.e. writer methods (keyword op), or as 
enquiries, i.e. reader methods (keyword enq). The programmer of a qualifying type can 
similarly declare bracket methods with the pseudo-identifiers op and/or enq, i.e. methods 
for catching writer and/or reader invocations on an object's instance (and bracket) 
methods3. Thus the programmer of a qualifying type does not need a knowledge of the 
particular types or methods of target objects in order to determine which of their instance 
methods modify objects. 

The next issue is that of the type of the database object and its replica. This can be 
resolved in that the qualifier receives as a parameter to its own maker a reference for the 
replica, defined as having the type Handle (the supertype of all reference types), so that 
a reference of any type can be passed in this parameter. But how then can the 
programmer be sure that this is actually the same dynamic type as that of the database 
object? 

A pseudo-type, called TargetType, can be used in bracket methods; this represents 
the dynamic type of the current target object (here the type of the database object). The 
programmer can use this in a cast statement to ensure that the handle which has been 
passed for the replica actually has the same dynamic type as the target object, e.g. 

 
impl ReplicaWriterImpl of ReplicaWriter { 
state: 
 Handle theReplica; 
maker: 
 init(Handle aReplica) {theReplica = aReplica;} 
qualifies any: 
 enq bracket op (...) throws WrongTargetType { 
  cast (theReplica) as { 
   (TargetType* myReplica) {/* the code for invoking the 
    method of the replica, available here as myReplica */} 
  } 
  else throw new WrongTargetType.init(); 
  ... 
 } 
 

The next question is how the appropriate method of theReplica can actually be 
invoked to update it (without needing a knowledge of its actual type or of the actual 
method which the client has invoked on the database object which it replicates). 

To answer this question we recall that the same problem exists in principle for the 
bracket method's invocation of the database object itself. In that case the solution is of 
course provided by the special Timor body statement which allows a bracket method to 
pass on the client's method invocation to its intended target. This mechanism can also be 
used to invoke other objects of the same dynamic type, such as the replica in the present 

                                                           
3 Notice that a bracket method which catches op methods might itself be declared as an enq (because it 
does not change the state of the qualifier) and vice versa. 
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example. The redirection of the client's call to the replica is indicated by prefixing to it a 
variable name (using the normal dot notation) 

The only context in which this redirection facility can be used is within a clause of a 
cast statement which casts to TargetType, in order to prevent unexpected run-time type 
errors. Furthermore, such a clause can only appear within a bracket method, since in 
Timor the same qualifier can be used concurrently to qualify different target objects; only 
when a bracket method is active the target – and therefore its type – is actually known. 
The bracket method can be written as follows: 

 
qualifies any: 
enq bracket op (...) 
                 throws WrongTargetType, ReplicaAccessErr { 
 cast (theReplica) as { 
  (TargetType* myReplica) { 
   try { myReplica.body(...); } 
   catch (Exception e) {throw new ReplicaAccessErr.init(e);} 
  } 
  else throw new WrongTargetType.init(); 
 } 
 return body(...);  // call the database object 
} 
 

An attempt to invoke the replica directly in the form theReplica.body(...) would 
result in a compile time error, even within the appropriate clause of the cast statement, 
since the compiler cannot guarantee (either inside or outside the cast clause) that a new 
object is not assigned to theReplica, and such an assignment could result in it having a 
type other than TargetType (because it is declared as a handle). However, the auxiliary 
variable used within a cast declaration (here myReplica) is always implicitly defined to 
be fixed (for a reference) or final (for a value). 

Finally there remains a protection issue. As the example stands, the writer of the 
qualifying type could take advantage of the handle passed into its maker to access 
arbitrary methods of the replica and thus violate the integrity and/or confidentiality of the 
object. (In order to achieve this a cast statement in which the programmer guesses the 
type would be necessary, but this possibility cannot be excluded.) We will consider this 
issue later.  

This example has illustrated for a relatively straightforward case how Timor can be 
used to develop new components which add "system" functionality to an existing 
application system. In the next section we explore a more ambitious example: enhancing 
an existing system to transform it into a transaction system. 
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3 ADDING TRANSACTIONS TO A SYSTEM 

The transaction concept is based on the four ACID properties: atomicity, consistency, 
isolation and durability [2]. The effects of implementing transactions with these 
properties are that (a) each transaction is regarded as an atomic action in the sense that it 
either executes to completion or it has no effect on the state of the system, (b) the 
database is left in a consistent state after the completion of each transaction, (c) 
transactions which execute in parallel are logically isolated from each other, and (d) after 
a transaction completes successfully its effects on the database are durable. As we do not 
- in this context - want to embark on a discussion of durability (and the related concept of 
persistence) we regard this property as having been fulfilled if changes to the object 
database made by committed transactions are recorded in the objects themselves. 

We assume that an application system which is to be enhanced by the transaction 
components presented in this section consists of a number of Timor objects (which can 
have different types) that can be visited by processes/threads which make method calls on 
the objects. If the system to be enhanced is already a concurrent one, we assume further 
that its previous synchronisation requirements were satisfied by the use of dynamic 
synchronising qualifiers along the lines described in [4], and that when the system is 
transformed into a transaction system these are removed from the objects which they 
qualify by deleting them from the qualifier lists of target objects (as described in [5]). The 
transaction components which we now present can thus take over the responsibility for 
synchronisation (as part of their function of achieving atomicity, consistency and 
isolation) without side effects occurring from an earlier synchronisation strategy. (Since 
the actual synchronisation details of a transaction system depend on the strategy adopted, 
synchronisation will be assumed but not coded in this example.) 

Architecture of the Transaction Components 

The proposed transaction management system has the following major components: 
• a single global transaction manager object, 
• a separate qualifier for each database object, known as an object manager and 
• threads in which the transactions are executed. 

The global transaction manager object, of type TrxManager, implements decisions by 
the application to begin, commit and abort transactions. It maintains a global overview of 
the identities and progress of individual transactions as they access the application 
objects, and organises commit/abort decisions at the object level. This object is a 
"normal" Timor object, i.e. it is not a qualifier. 

Each application object which can participate in transactions has its own associated 
object manager. This is a qualifier, of type ObjectManager, which has separate call-in 
bracket methods for controlling op and enq invocations of the target. These determine 
whether and how an individual transaction can access its associated target. They advise 
the global transaction manager whenever a thread touches its associated target object, and 
this then returns the identity of the transaction associated with the thread. In addition each 
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object manager has normal instance methods which the global transaction manager can 
invoke to advise it to commit/abort changes associated with its individual object. 

Each transaction has a separate identity and executes in one or more threads of an 
application system. A thread remains associated with the same transaction until the latter 
completes, i.e. it can only be reused after the transaction with which it is associated either 
commits or aborts. At any given point in time there is a unique mapping from a thread 
number to a transaction number, but over the life of the system different transactions may 
be mapped to the same thread number(s). 

This basic architecture is independent of the actual strategy adopted in a particular 
transaction management system (e.g. whether the approach is optimistic or pessimistic, 
whether before or after looks are used, etc.). It is not our aim to define a specific 
transaction system but to consider whether and how Timor can handle the basic 
mechanisms needed to implement such a system. 

The Global Transaction Manager 

The global transaction manager provides the application system with an interface via 
which transactions can be begun, committed and aborted. It also allows the object 
managers for the individual target objects to ascertain whether invocations of methods of 
the individual target objects are from registered transactions. There is one instance of this 
type per transaction system. It is used by a new application component which is 
responsible for scheduling transactions, known here as the transaction scheduler, which 
is not further described. 

The main functions of an object of the type transaction manager (TrxManager) are 
to: 

• allocate a transaction identifier for each new transaction, 
• allow object managers to check whether a call to a target is from a registered 

transaction, 
• determine whether a transaction can commit or must abort. 

How it achieves these aims depends on the implementation strategy. Because in Timor a 
type can have multiple implementations, it is possible to envisage different 
implementations of the following types which embody different strategies. 

Here is an outline type definition for a transaction manager: 
 
type TrxManager { 
instance: 
 op TrxId beginTrx(); 
 /* The application's transaction scheduler invokes this 
    operation when a transaction is initiated. It 
    - allocates a unique trx id, 
    - returns the trx id to the caller 
 */ 
 op boolean commitTrx(TrxId trx) throws InvalidTransaction; 
 /* This operation is invoked by the application transaction 
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    scheduler when a transaction completes. The TrxManager 
assesses whether the trx can commit (involving, for 
example, messages in the case of distributed 
transactions or validation in the case of optimistic 
transactions), and if so advises each object manager 
which has an object that has been touched by the 
transaction to commit. 

    If the trx cannot commit (e.g. due to conflicts between 
    transactions), the TrxManager aborts the trx. 
    The return value indicates whether the transaction 
    was committed (true) or aborted (false) 
 */    
 op void abortTrx(TrxId trxId) throws InvalidTransaction; 
 /* This operation is invoked from the application 
    transaction scheduler when a transaction has to abort. 
    It advises each object manager which has an object that 
    has been touched by the transaction to abort. 
 */  
 op TrxId trxNumber(AccessMode ac; Handle target; 
                                     ObjectManager* objMgr); 
 /* This method, called by object managers when 
    their bracket methods detect an access to a target, 
    - validates that the current thread belongs to a 
      transaction, 
    - notes for internal use the access mode parameter 
      and the reference for the affected target object, 
    - records the reference to the calling object manager 
      for use later to advise the object manager to make a 
      local commit or abort, 
    - returns the trx id of the transaction (null = invalid) 
 */ 
} 
 

Object Managers 

The type ObjectManager is designed as a general qualifying type, i.e. it can qualify 
targets of different types in a general way, without a knowledge of the target type or its 
methods. When a writer method of a target is invoked, an op call-in bracket method of 
the associated object manager is activated. When a reader method is invoked, an enq 
call-in bracket method of the object manager is activated. 
The main functions of the ObjectManager are: 

• using bracket methods, to monitor reader and writer calls on the target object. 
This involves 
- checking whether calls on the target object belong to a registered transaction 

(by referring to the global transaction manager) and if not, rejecting them; 
- where appropriate making a shadow copy of the target for use by a 

transaction; 
- where appropriate redirecting calls to the appropriate shadow. 
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• when advised by the transaction manager via an instance method, either 
- to commit the changes for a transaction, or 
- to abort the changes 
and to remove any shadow. 

The use of general bracket methods guarantees that different code does not have to be 
written to control different target types, and ensures that the same transaction 
management code can be re-used in different transaction systems. 

Here is a type definition for an object manager. 
 
type ObjectManager { 
qualifies any: 
 op bracket op(...) throws TransactionError; 
 /* This bracket method catches writer calls. Inter alia it 
    refers to the TrxManager to obtain the trx id of the 
    current thread, advising the Transaction Manager that 
    the access mode = WRITE. 
    If the thread does not belong to a registered trx, 
    the exception TransactionError is thrown 
    Depending on the implementation strategy this bracket 
    method may make a shadow copy of its object, to which  
    application calls to the target may be redirected. 
 */ 
 op bracket enq(...) throws TransactionError; 
 /* This bracket method catches reader calls. Inter alia it 
    refers to the TrxManager to obtain the trx id of the 
    current thread, advising the Transaction Manager that 
    the access mode = READ. 
    If the thread does not belong to a registered trx, 
    the exception TransactionError is thrown 
    Depending on the implementation strategy this bracket 
    method may make a shadow copy of its object, to which  
    application calls to the target may be redirected. 
 */  
instance: 
 op void localCommit(TrxId trxId); 
 /* This instance method, called by the TrxManager, commits 
    the trx from the viewpoint of its target object. 
    This may involve 
     - copying its shadow values to the target, 
     - removing the shadow from a shadow set.  
 */ 
 op void localAbort(TrxId trxId); 
 /* This instance method, called by the TrxManager, aborts 
    the trx from the viewpoint of its target object. 

This may involve, for example, 
 - removing the shadow from the shadow set and/or 
 - releasing locks held on the target object. 

 */ 
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maker: 
 init(TrxManager* trxMan); 
 /* The reference for the global transaction manager, allows 
    it to call the method trxNumber. 
 */ 
} 

In implementations of the object manager there are certain activities which are especially 
relevant for the current investigation. They may need the ability: 

a) unambiguously to identify both the current target object and the client's mode of 
access (read or write) to the target, in order to pass this information as parameters 
to the global transaction manager 's method 

 
op TrxId trxNumber(AccessMode ac; Handle target; 
                                     ObjectManager* objMgr); 
 
b) to create shadow copies of a target object and to redirect the invocations of the 

controlled objects by transactions to these shadows. 
c) to copy the content of a dynamically created shadow object back to the target (on 

a commit operation). 
These objectives must be achieved in such a way that the code involved can be written 
without an awareness of the types involved. We consider these points in turn. 

Identifying a Target and the Access Mode to the Target 

Identifying the access mode to the target object (i.e. whether the method invocation is a 
reader or writer call) is easily distinguished in Timor. Method calls caught by the op 
bracket method are writers, while those caught by the enq bracket method are readers. 

The type ObjectManager could have been designed with a maker which receives a 
handle for the target object. However, this would not guarantee that an actual reference 
passed in is actually for the target object. Instead the object manager can obtain a 
reference for its target object via a pseudo reference target, which of course has the 
type TargetType. In this sense the body statement of Timor, when used in isolation - as 
in earlier papers on qualifying types and bracket methods (e.g. [4, 5]) – can be viewed as 
a convenient short form for target.body(...). 

This mechanism enables object managers to invoke the global transaction manager 
from within the enq bracket method as: 

 
trxMan.trxNumber(READ, target, this); 
 

and from the op bracket method as: 
 
trxMan.trxNumber(WRITE, target, this); 

A protection issue similar to that mentioned in section 2 arises. In this case the 
programmer of the qualifying type could take advantage of the pseudo reference target 
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to access arbitrary methods of the target object and thus violate the integrity and/or 
confidentiality of the object. We return to this issue in section 4. 

Creating Shadow Objects and Redirecting Method Calls to Them 

In contrast with the example in section 2, a handle for a shadow object is not passed in 
via a maker. Instead the qualifier must dynamically create a shadow as a copy of the 
target object whenever one is needed. This can be achieved as follows: 

 
state: 
 Handle theShadow; 
qualifies any: 
 op bracket op(...) throws TransactionError { 
  if (/* first access by the current transaction */) 
   theShadow = new *target; 
  ... 
 } 
 

Here a single shadow object is declared as a handle in the object manager's state 
section. (In implementations of some transaction strategies a set of shadows, e.g. one per 
transaction, might be necessary, but a single shadow is sufficient to illustrate the Timor 
features of relevance to our discussion.) 

The statement used to instantiate an actual shadow object which is an exact copy of 
the target object (theShadow = new *target;) has the following semantics. 

The dereferencing operator (*) copies the value of the target object, accessed via the 
special target reference mentioned above, and returns this value. The standard 
functionality of the new operator in Timor is that it accepts any value (here a copy of the 
target) as its operand, and transforms this into a new object, creating a reference for it. 
The assignment operator then copies this reference to the reference variable (in this case 
theShadow). Notice that static type checking is here not a problem, as theShadow is a 
handle, and can therefore accept a reference of any type, regardless of the actual type of 
the target and therefore of the shadow copied from the target. 

As in the replica example in section 2, invocations of the target object’s methods can 
be redirected to the shadow object using a cast statement: 

 
cast (theShadow) as { 
  (TargetType* myShadow) { 
    try { return myShadow.body(); } 
    catch (Exception e) {throw new AccessErr.init();} 
  } 
} 

In appropriate cases the bracket method redirects the client's target method invocation to 
the shadow object (in this case without calling the target) and returns the result to the 
caller. 



 
SUPPORT FOR OBJECT ORIENTED TRANSACTIONS IN TIMOR 

 
 
 

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2 

Copying the Content of a Shadow Object back to the Target 

At this point it might be thought that all the key issues have been resolved. However, the 
qualifier must be in a position to copy the content of a shadow object back to the target 
object when a transaction commits. (The shadow cannot simply be used as a replacement 
for the target, as application components may have references to the original target.) 
There are two significant differences between this and the earlier copying of the content 
of a target object to a shadow. First the copying is to an existing object (i.e. the new 
statement is not relevant here). Second, the copy operation occurs in a normal instance 
method of the qualifier (e.g. the commit operation), not in a bracket method. 

The second point is relevant because it means that neither the type TargetType nor 
the special reference target can be used, i.e. a statement such as  

*target = *theShadow; 

is not allowed in an instance method, because the pseudo reference target can only be 
used in bracket methods. 

To circumvent this problem, the programmer can assign the target to a handle at the 
point where a shadow object is created, i.e. in the bracket method. Provided the handle is 
declared as a state variable it can then be used in normal instance methods, as the 
following code illustrates: 

 
state: 
 Handle theTarget, theShadow; 
qualifies any: 
 op bracket op(...) throws TransactionError { 
  if (/* first access by the current transaction */) 
   theTarget = target; 
   theShadow = new *target; 
  ... 
 } 
 

At this point the state of the Object Manager contains a reference pointing to the target 
object and a further reference pointing to the new shadow object, the content of which is 
a copy of the target object. 

In the localCommit instance method a statement such as 
*theTarget = *theShadow; 

is now in principle possible, but this must appear in a context where the compiler can 
check the types, i.e. in a cast statement. However TargetType cannot be used outside 
bracket methods because general purpose qualifiers can (even concurrently) qualify 
targets of different types (see [5]), so that outside a bracket method TargetType is 
ambiguous. 

However, a different Timor concept can be used to solve this problem. The crucial 
issue is not that the compiler needs to know both types involved, but rather that it can be 
sure they have the same type. To resolve such problems Timor supports a special type 
called SameAs, for use in the declaration part of cast clauses. This allows the compiler to 
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check that the dynamic types of the subject variable and that of another variable are 
identical. During the execution of the corresponding cast clause not only the subject 
reference (here thisShadow) but also the reference with which it is to be compared must 
be fixed, i.e. new assignments cannot be made to them (although the contents of the 
objects to which they refer can be changed). As mentioned earlier, an auxiliary reference 
used within a cast declaration (here thisShadow) is always implicitly defined to be 
fixed (for a reference). A separate auxiliary reference can be used to fix the target object 
reference, as follows: 

 
fixed Handle thisTarget = theTarget; 
cast (theShadow) as {  
 (SameAs thisTarget thisShadow) {*thisTarget = *thisShadow;} 
else throw new TransactionError.init(); 
} 
 

If the programmer were to attempt to make an assignment such as *theTarget = 
*theShadow either inside or outside the cast statement a compile time type error would 
occur, because both are just handles. 

Normally cast statement clauses are matched polymorphically with the variable 
which is the subject of the cast (e.g. a (Person p) {...} clause would be selected 
where the subject of the cast is a Student reference, assuming that Student is a 
subtype of Person). However, the SameAs clause makes an exact type check, giving the 
programmer the opportunity to use cast statements to check dynamic types exactly. 

4 PROTECTING TARGETS FROM QUALIFIERS 

In this section we consider how Timor can be used to prevent qualifiers from breaching 
the security of their targets (and any shadow objects which are copies of the targets). As a 
preliminary we briefly describe relevant aspects of Timor's view construct. 

Views 

A view defines a group of related instance methods which can typically be incorporated 
into many types, and its primary purpose is to encourage the idea of programming to 
interfaces. Here is a simple example: 
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enum Openmode {CLOSED, READ, WRITE} 
view Openable { 
 op void open(Openmode mode) throws OpenError; 
 op void close() throws NotOpen; 
 enq Openmode openMode(); // returns current open mode 
} 
 

A reference variable can have a view as its type, thus allowing objects of different types 
which contain the view methods to be used polymorphically. Hence objects of any 
"openable" type can be assigned to a reference 

Openable* openRef; 

and the Openable methods can be invoked via it. 

Restricting Access to Objects 

The pseudo reference target, as described in section 3, apparently gives any bracket 
method the right to invoke methods of its target object. This would potentially provide a 
mechanism by which programmers could violate both the integrity of the target (by 
invoking its op methods) and its confidentiality (by invoking its enq methods). The same 
threats also arise through the passing in of a replica via a handle in the replica writer 
example in section 2. 

Timor supports a simple mechanism which the programmer can use to prevent such 
breaches. Any reference variable declaration, including that for a handle, can be restricted 
in a manner analogous to the mechanisms for restricting access via capabilities in 
operating systems. This is achieved syntactically by listing in special brackets ([: and 
:])a set of access permissions after the type of the reference. Each permission can be 
expressed as a view. 

Given the above definition of Openable and an object of type File, which includes 
the above methods open, close and openMode (regardless whether they were explicitly 
incorporated as a view in the original type definition or were defined as normal methods 
of the type), access via the following reference variable fileRef would allow only these 
methods to be accessed. 

File*[:Openable:] fileRef; 

Such a reference is called a restricted reference. Downcasts cannot be performed on 
restricted references. 

The difference between fileRef and openRef is that any object of any type which 
incorporates the view Openable can be assigned to openRef, as for normal subtyping, 
whereas objects only of the type File (and its behavioural subtypes) can be assigned to 
fileRef and only the methods of Openable can be called via this reference. Hence this 
mechanism is more restrictive than normal subtyping. 

The set of permissions are defined using the same set syntax as is used for defining 
subsets in the Timor Collection Library. The operators are + (union), - (difference), * 
(intersection). 
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The rule for assigning objects to restricted references defines that the methods 
invocable from the restricted reference must be a subset of those invocable via the 
reference from which the assignment is made. Hence access can be reduced but not 
increased by using different variables or by passing parameters. 

The relevance of this mechanism to the problem at hand is that there are also certain 
predefined views, including op, enq, and body. These restrict the use of a reference 
variable to allowing only calls to writer methods, to reader methods, or to a single 
invocation of body (only within a bracket method). 

Target References and the Body Permission  

To solve the problems outlined above with respect to the replica writer example, the 
body permission can be used as follows: 

 
state: 
 Handle[:body:] theReplica; 
maker: 
 init(Handle[:body:] aReplica) {theReplica = aReplica;} 
qualifies any: 
enq bracket op (...) 
                throws DynamicTypeErr, ReplicaAccessErr { 
 cast (theReplica) as { 
  (TargetType[:body:]* myReplica) { 
    try { myReplica.body(...); } 
    catch (Exception e) {throw new ReplicaAccessErr.init();} 
  } 
  else throw new DynamicTypeErr.init(); 
 } 
 return body(...);  // call the database object 
} 
 

Here the reference for passing in the (already existing) replica is restricted to one 
invocation of body(...) per activation of a bracket method. Other methods cannot be 
called at all. The restriction that body(...) can be invoked once only in the activation 
of a bracket method is a general restriction, i.e. although a body statement for a particular 
target can appear statically at different points in a bracket method, only one dynamic 
execution is permitted. This is important to ensure that repeated activations of 
body(...) cannot be used to violate the integrity of the target object in the form of a 
replay attack. 

In the replica writer example the body permission is visible to the client who creates 
a qualifier, via the maker parameter. Since this guarantees that the object which he passes 
in can subsequently be further assigned only to references also restricted to a single body 
invocation, the client (who associates the qualifier with his target object) can be sure that 
no other methods of the target are invoked by the qualifier and that for any bracket 
method activation only a single invocation of body(...) is permitted. 
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Restrictions on the Use of Target 

The transaction processing example introduces the pseudo reference target. It is also 
essential that the instance methods of the target object cannot be invoked via this pseudo 
reference. This is guaranteed by the fact that target is itself restricted to a body 
permission, i.e. its implicit definition is: 

 
TargetType[:body:]* target; 

Copying Objects 

The remaining issues in the transaction processing example are concerned with misusing 
the shadow. Shadow objects are not passed in as parameters and therefore cannot be 
restricted by clients passing in a restricted reference, in contrast with the replica example. 
The key issue here is that a shadow object is created by copying the content of target, 
i.e. 

 
theShadow = new *target; 
 

The solution is therefore self evident. The rule that an object can only be assigned to a 
reference which is at least as restricted as the reference which is the source of the 
assignment is extended to apply to copies of objects. In other words, because target is 
accessed via a reference with only a body permission, a copy can only be assigned to a 
references which has at most the body reference permission. Hence the above assignment 
will fail unless theShadow is declared as: 

 
state: 
 Handle[:body:] theShadow; 
 

Corresponding changes must then also be made to the code. In the bracket methods the 
following modification is required for the cast statement: 

 
cast (theShadow) as { 
  (TargetType[:body:]* myShadow) { 
    try { return myShadow.body(...); } 
    catch (Exception e) {throw new AccessErr.init();} 
} 
 

In the local commit method the statement 
 
cast (theShadow) as { 
 (SameAs theTarget thisShadow) {*theTarget = *thisShadow;} 
} 
else throw new TransactionError.init(); 
 

remains unchanged, since SameAs checks the exact type. 
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Confining Objects 

Although the measures described earlier in this section are thought to be sufficient to 
prevent the flow of information from a target via a qualifier to an unauthorised third 
party, the owner of a target, when he creates the transaction qualifiers, can qualify these 
with further qualifiers which have call-out brackets designed to confine information 
which the transaction qualifiers attempt to release to other components [6]. 

Such brackets could prevent invocations of any methods except calls from an object 
manager to the global transaction manager's trxNumber method. This releases 
references for both the object manager itself and for its target. However, the target 
reference is needed only for identification purposes and should never be called by the 
transaction manager. This can be guaranteed by defining trxNumber to have a restricted 
reference as its parameter, i.e. Handle[: :] target. This empty set restriction 
indicates that no methods can be called via this reference. 

The reference for the object manager, on the other hand, is needed by the transaction 
manager to invoke the former's commit and abort methods and so cannot be completely 
restricted. In this case the restriction must be to a view which permits these calls, e.g. 

 
view TrxFinalisation { 
 op void localCommit(TrxId trxId); 
 op void localAbort(TrxId trxId); 
} 
 

These restrictions are reflected in the following redefinition: 
 
op TrxId trxNumber(AccessMode ac; Handle[: :] target; 
                ObjectManager[:TrxFinalisation:]* objMgr); 

Copying Objects with Qualifiers 

When an object is copied, as in the statement 
 
theShadow = new *theObject; 
 

the dynamic qualifiers in the qualifier list [5] of the original object are not automatically 
associated with the new object, neither in their original form nor as copies. However, 
dynamic qualifiers can be associated with a new object as it is created, e.g. in a literal 
qualifier list or they can even be added later, if a named list is used. For example the 
above statement might be modified to read: 

 
theShadow = new {qualifier1, qualifier2} *theObject; 
 

In this case two qualifiers (which might or might not also be in the list of the original 
object), are associated with the new object. 



 
SUPPORT FOR OBJECT ORIENTED TRANSACTIONS IN TIMOR 

 
 
 

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2 

If an object is defined (at the type level) to have static qualifiers [7] these are 
considered to be an integral part of the object and are automatically copied as part of an 
object which is copied, i.e. they are part of the value returned by the dereferencing 
operator *. 

Preventing the Copying of Objects 

The use of the dereferencing operator to copy objects can itself in principle present a 
threat to the confidentiality of an object. Suppose for example that an object is protected 
by a qualifier which contains an access control list (ACL) [9], it might appear possible to 
circumvent this protection by copying the object and then accessing its information as 
stored in the copy. 

However, this situation can be prevented by the use of bracket methods. When a 
dereferencing operator occurs on the left side of an assignment statement it indicates that 
the object's value will be overwritten by the value of some other object of the same type. 
Just as general bracket methods can be defined as op and enq brackets (to monitor 
operations and enquiries), so also a bracket method overwrite can be defined which 
monitors overwriting (and if appropriate prevents this by not calling the body statement). 
Similarly a copy bracket method can be defined to monitor and potentially prevent the 
use of dereferencing on the right side of an assignment statement or more generally in an 
expression. If overwrite and/or copy bracket methods are not defined, then op and/or 
enq brackets (if they exist) are applied to dereferencing operations. 

Preventing the overwriting or copying of objects can also be achieved by references 
which restrict the use of these operations (e.g. Handle[:all-overwrite:]). 

5 RELATED WORK 

To our knowledge the only other work which is closely related to the programming 
language concepts described in the present paper is that being carried out in the aspect 
oriented programming (AOP) community. 

Timor's qualifying types can be seen as a technique for defining and implementing 
aspects, but in contrast with languages such as AspectJ [8] and AspectC++ [11] it 
supports various features which make it particularly suitable for supporting transactions 
and similar "system oriented" activities. These include the ability: 

• to distinguish between reader and writer methods without needing to resort to 
special naming conventions and pattern matching, 

• flexibly to associate qualifiers with individual objects rather than associating them 
statically with a class,  

• dynamically to add qualifiers to and remove them from existing objects [5], 
• to associate the same qualifier with a group of objects rather than with a single 

object or with all objects of a class, 
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• to define aspects without a knowledge of, or a need to modify the code of, a target 
(at any level, whether in the source, intermediate code or compiled code), i.e. 
without the need to define "pointcuts", 

• to define aspects without a knowledge of each other, even in cases where 
precedence is considered to be relevant, 

• to define general qualifying types and specialised types based on view interfaces 
without a knowledge of (nor the presence at compile time of) each other's source 
or bytecode or that of types which they might qualify, 

• to introduce new methods ("introduction" in AOP terminology) without these 
becoming methods of the qualified objects (important for example where the 
qualifier controls protection, so that the client cannot change the protection 
conditions). 

Recent AOP developments, the so called "second generation" AOP projects, e.g. [1, 3], 
have addressed some of these issues. In particular criticisms of the static approach of 
AspectJ have led to a more dynamic approach, as exemplified by JBoss [3]. This frees 
aspects from being bound to types, allowing advice to be dynamically associated with 
and removed from individual objects. This is achieved by binding advice to method calls 
using XML. In this way, methods can be either directly bound to aspect advice or can be 
"prepared" for such advice (the more dynamic case), and advice can be instantiated and 
then attached to advised objects as appropriate. While this approach is certainly more 
flexible than AspectJ through its more dynamic features, it still resorts to the use of a 
second language level (XML) to associate aspects with objects. This is fundamentally 
different from Timor, where "aspects" (qualifiers) are completely defined in terms of the 
normal features of the languages and can (with complete flexibility) be added to and 
removed from individual objects simply by manipulating a normal Timor list associated 
with the object, which is itself a first class element of the language. 

Finally middleware has been claimed to be the "killer application" for AOP: 
"Much application-server functionality can be cleanly and logically expressed as 

aspects. Context passing, remoting, security and transactions can be thought of as add-on 
functionality that happens 'around' (before and/or after) a method call to an ordinary 
object. Aspect-oriented programming allows an application server designer to provide 
these features without requiring service developers to extend abstract classes or 
implement interfaces" [10]. 

In the present paper we have demonstrated how transactions can be supported in 
Timor using qualifying types (the Timor equivalent to aspects). In earlier papers we have 
also shown how qualifying types can play a significant role in improving security. But we 
are not convinced that they will in future have a significant role to play in "remoting" 
(remote procedure calls), or in implementing persistence (which is added to the list in 
another part of the same paper). In the context of Java this claim makes sense because 
remote procedure calls and persistence are not fundamental features of the Java language, 
and so must be treated as add-ons. But Timor, as a new language, presupposes a 
fundamentally different model, in which both remote procedure calls and persistence are 
basic architectural concepts. Hence they do not need to be provided as add-ons, and 
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consequently qualifiers have no role to play in their implementation. This is the subject of 
a paper currently in preparation. 

Finally, it is not clear to us how the AOP approach can provide a level of protection 
approaching that described in section 4, whereby the integrity and confidentiality of an 
application can be safeguarded from components developed to provide a transaction 
processing environment (or other separately coded aspects). 

6 CONCLUSION 

The paper has demonstrated how Timor can employ qualifying types to handle a certain 
class of "system" issues, including the maintenance of replicas and support for 
transactions in the traditional database sense. It has also demonstrated how target objects 
can be protected from wayward qualifiers. Perhaps its most interesting contributions in 
terms of the technicalities of qualifying types are (a) the idea that the language provides 
(restricted) access both to the target object itself (using the keyword target) and to the 
type of the target (using the keyword TargetType), and (b) that invocations of a target 
can be deflected by bracket methods to replicas/shadow objects. 

The effect of these features is that a well-structured Timor application system which 
was not originally designed to work in transaction mode can be updated to a transaction 
system by introducing autonomous components. These new components can be designed, 
developed and implemented completely independently of individual application systems 
and without changing the code (at any level) of the application objects on which 
transactions are carried out. Thus a generic set of transaction components can be 
developed and then applied to a wide range of disparate existing applications. 
Furthermore different transaction strategies (e.g. optimistic, pessimistic) can be supplied 
in alternative implementations of the component types. 

Finally transactions have been used in this paper as a demonstration of the flexibility 
just described. But this flexibility can equally easily be applied to the retrofitting of other 
kinds of requirements, such as security, monitoring, protection and so on. 
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