A CAPABILITY-BASED PERSISTENT

DISTRIBUTED SHARED MEMORY

A thesis submitted to the
University of Newcastle, NSW
for the degree of

Doctor of Philosophy in Computer Science

FRANS ALEXANDER HENSKENS

MAY, 1991

Candidate's Certificate

I hereby certify that the work
embodied in this thesis is the result of
original research and has not been
submitted for a higher degree to any
other University or Institution.

(Frans Alexander Henskens)

Acknowledgements

I wish to offer my sincere thanks to Associate Professor
John Rosenberg, my friend, colleague, and supervisor
during this research project. Not only have I received the
best possible supervision from Professor Rosenberg, but I
have benefited enormously from his insight, his wide
ranging knowledge, and his constant encouragement.

Thanks are also due to other friends and colleagues:
Professor J. Leslie Keedy for founding the MONADS
project, for his belief in me, and for his encouragement
and expertise; Mr David Koch for the numerous
discussions and for his hardware expertise; Mr Peter
Bréssler for the late night discussions while I was
struggling with network protocols and the MONADS
architecture; Dr Michael Hannaford for his
encouragement and willing ear when my spirits were low.

Thank you to the Australian Postgraduate Research
Awards Scheme and the University of Newcastle for
providing me with the opportunity to perform this
research whilst simultaneously providing me with the
means to support my family.

Lastly I must thank my wife, Héléne, and my sons Frans,
Samuel, and Willem, for being my family, and providing
me with the motivation to complete this work.

_Iij__

TABLE OF CONTENTS

Chapter 1 INTRODUCTION suessesonmssssssstsssssosssmtosms s s i msnos 1
1.0 Background to this Research.......iieiens 1
1.1 RAHONAIE.....cccirverermriiiiriiriiinissinssssisssnesesessis s setsnsssesssoseessessesssssassanses 2
1.2 AUNYS s vnmmmmsmerssnrerens s oo s R R RN S H SR SR VA 3
1.3 OQrganisation of the Thesis wwsmmsmmsmemnwesmmmmsmsssas 4
Chapter 2 NETWORKS AND DISTRIBUTION PROTOCOLS.........ccvrvrenst 6
LA 0216 1a (06 L5 (e 5 1) o FOU U OSSO 6
2.1 "THE DBTREERTEE NISHEL.. .o cmasmmmmmmmmsmsanssmmssevessmmsssmmegags 7
2.2 Existing Network Protocol$ s 10
2.2.1 Message Passing Systems.......ccausavimsmsmciosisimsismsiiing 11
2.2.2 Remote Procedure Call Systemscvvervrresnerernrrenes 14
2.2.2.1 Distributed Operating Systems and
BRPC s smmimsanesssssos sos o i o Ao A B WA A R SV 16
R N B TR 16
2.2.2.1.2 AMOEDA 4.0......coivimrmirtiinieenieresnenerssneess 21
2.2.3 Distributed Shared Memory Systems.........ccccoveeirireeeee. 25
2.2.3.]1 Abramson. and Beelv .o 28
2282, IVY v s s o s s s i 28
2.2.3.3 MemNEL.......cceevvrrrrneenrnrersssrmsessessesssesnsnsssnesnsssesneses 30
8.0 AR GO N cvmscesiunsumcemamss s st s e S 33
Chapter 3 PERSISTENT SYSTEMS :ovmsmmssmsmmanssmsrsmiemssmssmvisssmsminmmss 35
30 IrodOCHOT: iz msiss e it e i S5 smsannns 35
3.1 PEISISIEIICE. .. vieeerrirtrscereisrrees s essesnisre e ssesnessessasssnssssonssssrersassnrones 35
3.2 Persistent Object MANAgers.......covwsmpsisssspoassnrissisnesiasssomsssassn 37
3.3 Persistence Using Existing Hardware and Operating
T €0 T g 38
3.3.1 The Single User Napier StOre......cccveeereerervereeuncsseerennnnnes 39
I R T U 43
3:3.2 The Distributed Napier Store. .. s vinms 43
3:8:2:]. Evaluation e ass it isiiiiissssmsasard 48
55 T S @70 s [e] 15 =3 10 s OO 50
Chapter 4 VIRTUAL MEMORY AND THE MONADS
U L 51
4.0 IrOOUICHION G sesions i i it adinvinissinsridinpnransssnsassrssras ssasass 51

4.1 VIrtbural METTIOTY . ;oosssserveasssssarssssosmsss s sssausmsssyisss s msmriss oo isaisavs 51

4.2 Conventional Virtual Memory Management.........coceccvvvenereseenes 53

4.3 Management of Large Virtual MemoOTiesc.oeeermmrereveserrrereenes 58

4:3.F Address Tras] St HATAWETE s 60

4.3.2 Secondary Storage Management.........cereernreesnransess 63

4,35 BEvaltiation e s s s 68

4.4 Higher Level Memory Management ... miinerrcnssrrcsns 69

4.4.1 Segmented Virtual MEmMOIYcooveriesvenssermsinonessessssnens 70

TS B 055 Vel 1hE=3 (s RN NSSU—— 74
Chapter 5 THE MONADS DISTRIBUTED SHARED MEMORY

IO I iz 55insisuiibinins bbb ia oA R TRAGS it dharinn UGt ST R b S haam e R eAT s A AP RS TAR SRR S ASRAARAERS 08 76

5.0 INtrOdUCHON.ivviveirericissieiisiisirinnir s s sresressssssesssssnesisssnssnes 76

D1 The NEUWOTK .commissmmmmvasomsmsmamsssmssarssmoms i s s s 76

5.2 Addressing The Distributed Shared Memory.........ccooovvvvennirees 78

52,1 Node NUMDEYS..i.icismisisrisiiibniniitinmnsmarsonsessasssssnrasssersassnoses 79

5.2.2 Page FaultS......vivicriirininnirinnssccssnisseessssmsesssnssssss e 80

5.2.2.1 Reémote PAgERAulS,...owmmammmmpmnnsmreme 80

5.2.3 Node Address Resohation s 81

B3 Data C oo eryaN w0 R A A i on obiniinie 83

5.3.1 Multiple Reader/Single Writer Protocol.........cvuu... 84

5.3.1.1 Obtaining a Read-only Copy of a Page........... 87

5.3.1.2 Obtaining a Read/write Copy of a Page........ 90

5.3:1.3 Page DIscard auuiuismsmsviasnsiasiviimssiomtins 91

5.3.1.4 Node ShutdoWn.....imeiniinnn. 93

(o % T T T YT (RSO 94

B.4. Proecss SynehroniSalion..uusmossnssmsasmsmsspmmvsmasnssmig 95

5.0 €Ol IOTY s R i e frrkrarasassnssisasraasenserses 97

Chapter 6 ADDRESSING MOVED MODULES..........cccotvenrenmmrmrmnsennssseserens 98

i BT OO OR——————— 98

6.1 Relocating VOlUmEs ouormmmmsmipsimmsms s b s 99

6.1.1 Locally Mounted VOIUITESccoeerrrevrernenerninsermveressisenes 100

6.1.2 Moved Volumes Mounted on Remote Nodes.......101

B L2 Lyscussansssnomsrspmvsrmsnssmesssms A R 102

6.1.2.2 Creating the Foreign Mount Table............. 104

6.1.3 DISCUSSIOIL..ccruirurreerierrecsiniesimssiesiessmmmssessistrssssssessessnesees 108

6.2 Relocating ModUlES.........cocverervremsrnsininrenmeimmeessnneineesssssinesssssennes 109

6.2,1 Addressing MoVed MOAUles wmmwmmimmmmmmanasis 111

6.2.2 Maintenance of Open Moved Module Data............. 113

6.2.2.1 Extended Volume Directory........cccoeerrevrnrenen 114

6.2.2.2 The Moved Object Table....cumumissisnise 116
6.2.2.3 The Open Page Fault Handler
Algorithm Using the MOT ... 119
6.2.2.4 The General Page Fault Handler
Algorithm. Using the MOT...umsmmmmamasnasnsens 120
6.2.2.5 DiSCIISSION cicicssssirirssisusisiisssiviviniorbint ibanansossasssnsen 121
6.2.3 Use of an Alias in Addressing Moved Modules.... 121
6.2.3.1 The Page Server Algorithm Using the
L T — 125
6.2.3.2 The Open Page Fault Handler
Algorithm Using the FAST ... 126
6.2.3.3 The General Page Fault Handler
Algorithm. Using thie FAST .o 128
6.3 Conelusion vemessammmamasm e s A 128
Chapter 7 STABILITY OF THE DISTRIBUTED SHARED
MEMORY.....ueeriisinisiissireisonimssiessostassiesssesssissssssssssorssissssssssessessstsessssssessssssssessans 130
70 BrOGUCHON s covnmsmsmrmmmmmsmmmsrom s s v S T s 130
7.1 Stability and Shadow Pasing, .esmssmsaasomsas s 131
T:2 ALomie UUPHALE it m o b i s ssssrassasessnesasnsnnonsns 133
7.2.1 Challis' Algorithim ... 133
7.2.2 Challis' Algorithm and the Single Node
LB V) o T — 137
7.3 Shadow Paging and the Single Node MONADS Store....... 138
7.3.1 The Shadowed Pages Table......cuiineecnererensenns 139
7:8.2 Read-only-and Read/writé PAges...uuwwussmmmimss 141
7.3:3 Management of Disk Pagesuuseassssamnimviig 141
7.3.4 Operations on the Stable Store...........ccceeeeeeverreccrnrnnnn, 142
7.3.5 Implementation of the Shadowed Pages Table... 144
7.3.6 Multi-Volume StabiliSe . umusssnmusamemme s 145
TodsT PrOCESSES e s o e 146
7.3.8 DISCUSSIOM.....covierevesicriririeniestineiininssisssessvssrssnessssnsessesvanss 146
7.4 Network-wide Stability........cccocvvriviriiiniinisniiiivie e, 149
7.4.1 Allocating Disk Space for a Remote Read/write
PAIIE sosvurminmmn oo s o S e S S SRR SV 150
7.5 System Failure............cc.... restesrereesneresaenaares vrerererres e re e s 152
75,1 Fallute of an Importng Node...ueuwmunommums 152
7:5.2 Failure of an Exporting Node.camssassmmrmssiinss 155

7.5.3 Failure of the Interconnecting Media......c.ccocereranne. 156

7.6 Multiple Volume Stabilise Across NOdES..........vvvvevvvvvnrrrnnnnnnns 157
Tl O OTNC NS IOTY i smussunnn s s A S S S ST 158
Chapter 8 IMPLEMENTATION........cccctoeesersrreresmeresseeeerenrassnssssssssssssnsesones 159
R A IR BHRL - oorcsocmsommimssvsmmmessrommssaenmsiassnceme ol oA s 159
8,1 The MONADS: Kernel. s s o s 159
8.1.1 The Pre DSM MONADS Kermmel Processes............ 162
8.1.2 The DSM MONADS Kernel Processes.......c..cc.vuvenn.. 164
8.1.3 The Virtual Memory Message BlocK.......c.ccoeererereenes 165
8.2 The Function of the Network Processeirerecnnen. 166
8.2.1 The Ethernet Interface.uansmmrsmsssmsmssammmig 169
8.3 Processing Page Faults........cceeriiinieeronniicniienneieriirmennennessensesees 170

8.3.1 Determining Whether a Page Fault is Local or
BT ORE wcovenvsmysnsavssmossaes o s s A e A SR SNV 171
8.3.2 Determining the Resolveability of a Page Fault.....172
8.3.3 Resolution of a Local Page Fault.......cccevevereireniennes 173
8.3.3.1 Local Resolution of a Page Fault.................. 174
8.3.3.2 Remote Resolution of a Page Fault............. 178
8.4 Conelusion. .o G s S R 180
Chapter 9 CONCLUSION . co s s i i il msassanssnamsssasssssasess 182
9.1 Uniformity of Access t0 RESOUICES.....cvrvvvvervreenreererninseeninens 184
9.2, Natiitg TYatiSPaleiie ..o cuamevisnsusssnpwumupyensisnisevss s sisars 184
9.3 Location TranSpareTCY wsussssssassssiswsissisvommiisdmmg 185
F 4 Control Over ACCESS ummsmesivssrisrtsasuiimss s il sittie sransssarsmsssn 185
0.5 StaADIlILY ..ottt sssa e b s sessesenes 185
96 PErSISHETION, . sovmroonerasesssssmosmimmysmiinntssn s oo s s ees 186
o L —— 186
9.8 Future DIreCtionsS.......cimicninninosincnsnmensnisissreo e 187
Appendix 1 Network Message TYPES....cvcevvereeerireensieiveeeceressereessnseesssssenes 189
Appeiiaie.2 State TEAsiaon. DRaIrais. ..cow e 191
Appendix 3 Algorithms for the operation of kernel processes........ 199
Appendix 4 Implementation Details ..., 202
BIBLIOGRAPHYoovturuiieesresenerecsnssesenssssssssssssssssssssssessssssessssesssesssssensosssssassenes 211

SYNOPSIS

This thesis presents research into the application of the Distributed
Shared Memory paradigm to distribution of an existing persistent store
based on a large uniform virtual memory. Control of access to this store
is provided by support at the architectural level for capability-based
addressing.

Distribution of the store increases the number of potentially faulty
system components, making the store more susceptible to failure. It
also extends the potential domain of effect of the failure of a single
machine to any subset of the set of machines connected to the network.
For this reason the related topic of stability of the store is also
investigated.

The distributed system described in this thesis hides such distribution
from the user, providing a stable and secure persistent environment.
Features of the distributed store include naming and location
transparency, system-wide data coherency, and fine-grained control
over access to data and programs. Moreover, programs written for non-
networked use execute without change in the distributed environment.

The thesis is organised as nine chapters.

Chapter 1 introduces the reader to the thesis, providing an
overview of the MONADS project on which the work is based, and
presenting the rationale for and the aims of the research.

Chapter 2 provides the reader with background knowledge of
networking in general, and presents several approaches to the
problem of providing distributed access to resources. The concept
of Distributed Shared Memory (DSM), which is the approach to
distribution used in this work, is then introduced.

Chapter 3 introduces the concept of persistence. The MONADS
architecture, as mentioned earlier in this chapter, had the
potential to satisfy all the requirements of a persistent store. In
chapter 3 the persistence paradigm is presented, and existing
single-user and distributed persistent systems are described.

- viii -

Chapter 4 describes the MONADS architecture. Understanding of
this architecture is necessary because the subsequent chapters
present modifications and extensions to it.

Chapter 5 presents extensions to the single-node MONADS
architecture which implement a DSM approach to distribution.
Access to resources is achieved in a manner which makes their
physical location totally transparent to the user. The architecture
presented in this chapter assumes that programs and data are
never moved from the disk on which they were created, and that a
disk is never moved from the node on which it was formatted and
partitioned.

Chapter 6 addresses the restricted nature of the model presented
in chapter 5. In chapter 6, schemes which allow disks to be
mounted on any active machine, and which allow data and
programs to migrate between disks and machines are presented.
These schemes are significant because they allow such movement
of resources without compromising the location transparency
achieved in chapter 5.

Chapter 7 addresses the issue of stability. The chapter starts with
some background discussion, and then presents a scheme for
achieving stability of the single-node MONADS store. Simply
adding this stability scheme to the MONADS architecture, together
with LEIBNIZ, would provide a system satisfying the requirements
of a persistent programming environment. An extended scheme
which provides a stable distributed system is then presented.

Chapter 8 describes an implementation of the distributed
architecture using an experimental system consisting of three
MONADS-PC computers.

Chapter 9 concludes the thesis by summarising the achievements
of this research and indicating directions for future research.

Chapter 1 INTRODUCTION

1.0 Background to this Research

The research presented in this thesis was performed as part of the
MONADS project. This project was instigated by then Dr. J. L. Keedy at
Monash University in 1976. Work on the project is currently in
progress at two locations; at Newcastle, Australia under the leadership
of Associate Professor J. Rosenberg, and at Bremen, Germany under the
leadership of Professor J. L. Keedy.

The main aim of the project is the development of improved software
engineering techniques. The need for such new techniques became
apparent to Dr. Keedy during his employment as a member of the VME
operating system design team with ICL. Two major deficiencies of
existing software systems were targeted. These were

(1) the high cost of software development and maintenance, and
(2) weaknesses in the area of security of data.

The MONADS group developed techniques based on the decomposition
of software systems into collections of information-hiding modules as
first proposed by Parnas [87, 88]. Access to these modules, and thus to
all programs and data in the system, is controlled by capabilities [39,
47]. After a moderately successful attempt to implement these
techniques using modified commercially available hardware [51, 122],
the group developed a series of purpose-built designs [61, 65]
culminating in the MONADS-PC architecture [100]. This architecture
provides explicit support for both modules and capability-based control
of access to them. Significantly, the architecture also removes the
distinction between short-term and long-term data by completely
eliminating the concept of a separate filestore, thus providing a good
foundation for the construction of a persistent programming
environment [9, 11]. The high level programming language LEIBNIZ
[44] exploits the features offered by the MONADS-PC architecture to
make substantial progress towards the provision of such an
environment.

1.1 Rationale

The research leading to this thesis identified two deficiencies of the
MONADS architecture. These were

(1) the lack of support for distribution, and
(2) issues relating to the reliability of the store.

The first deficiency meant that every MONADS-PC computer operated
in total isolation, and that it was not possible for users on different
machines to share resources such as programs and data, or even to
exchange electronic mail messages. A solution to this deficiency had
been alluded to in [3], but the solution was very general, and many
specific problems had not been addressed.

The second deficiency meant that uncontrolled system shutdowns left
the virtual store in an inconsistent state, with serious implications for
both data integrity and control of access to data. Moreover, it was not
possible to satisfactorily recover from such a failure.

To the reader, this second deficiency may appear to be unrelated to the
first, and may thus be perceived to be a totally separate research topic.
In fact this is not the case because connecting discrete computers to
form a distributed system

(1) increases the possibility of failure because of the increased
number of potentially faulty system components, and

(2) extends the potential domain of effect of the failure of one of the
machines to any subset of the set of machines connected to
form the system.

The environment provided by the LEIBNIZ language and the MONADS
architecture provided no support for distribution, and was rather
fragile. It therefore did not completely satisfy the requirements of a
distributed persistent programming environment.

1.2 Aims

The first major aim of this research was to achieve distribution of the
MONADS architecture by connecting an arbitrary number of discrete
MONADS computers to a local area network. The created system would
enable users of the connected computers or nodes to share resources
such as programs and data, and devices such as printers. Several
important properties were required of the distributed system. These
related to the user's perception of the services offered by a connected
node compared to those offered by a discrete machine, and were as
follows

(1) The distribution of the system would provide users with
improved functionality without compromising the functionality
available from a single, non-connected machine.

(2) A resource would be identified by name, and that name would
define the resource only and not its current location. As a
consequence the resource could be moved to another node and
still be accessed using its original name.

(3) All users at all nodes would have a coherent view of shared data.

(4) The owner of a resource would have control over access to the
resource on a network-wide basis.

(5) Programs developed for use on a non-networked machine would
execute without change over the network.

The MONADS architecture already provided a large, system-wide virtual
memory space with explicit support for information-hiding modules
protected by capabilities. The natural method for achieving distribution
of the architecture was to extend this memory space to encompass the
connected nodes, thus creating a distributed shared memory (DSM). A
number of other researchers had previously created DSMs [36, 74]. The
techniques developed by these researchers did not support the
creation of large shared memories, meaning that their usefulness was
restricted to applications such as data sharing between parallel
processes. To enable the sharing of all resources, it was necessary to
develop scaleable techniques.

As work on the creation of the DSM progressed, and the implications of
failure of a node became apparent, a second major aim emerged. This
second aim was to produce a fault-tolerant virtual store. This store
would recover from hardware or system software failure by reverting to
some previous consistent state in much the same way as database
systems may roll-back after a failed commit operation [7]. A store with
this property is said to be stable. The features required of the
techniques developed to implement stability were

(1) flexibility to allow logically related groups of data to be rendered
stable separately from the other data in the store,

(2) the ability to initiate a stabilise operation from both system and
user software, thus providing a basis for the construction of
higher-level transaction based systems,

(3) efficient usage of disk space and processor cycles, and
(4) extendability to a network of connected machines.

In this thesis we show that both of these major aims have been
achieved.

1.3 Organisation of the Thesis
The thesis is organised as nine chapters.

Chapter 2 provides the reader with background knowledge of
networking in general, and presents several approaches to the
problem of providing distributed access to resources. The concept
of Distributed Shared Memory (DSM), which is the approach to
distribution used in this work, is then introduced.

Chapter 3 introduces the concept of persistence. The MONADS
architecture, as mentioned earlier in this chapter, had the
potential to satisfy all the requirements of a persistent store. In
chapter 3 the persistence paradigm is presented, and existing
single-user and distributed persistent systems are described.

Chapter 4 describes the MONADS architecture. Understanding of
this architecture is necessary because the subsequent chapters
present modifications and extensions to it.

Chapter 5 presents extensions to the single-node MONADS
architecture which implement a DSM approach to distribution.
Access to resources is achieved in a manner which makes their
physical location totally transparent to the user. The architecture
presented in this chapter assumes that programs and data are
never moved from the disk on which they were created, and that a
disk is never moved from the node on which it was formatted and
partitioned.

Chapter 6 addresses the restricted nature of the model presented
in chapter 5. In chapter 6, schemes which allow disks to be
mounted on any active machine, and which allow data and
programs to migrate between disks and machines are presented.
These schemes are significant because they allow such movement
of resources without compromising the location transparency
achieved in chapter 5.

Chapter 7 addresses the issue of stability. The chapter starts with
some background discussion, and then presents a scheme for
achieving stability of the single-node MONADS store. Simply
adding this stability scheme to the MONADS architecture, together
with LEIBNIZ, would provide a system satisfying the requirements
of a persistent programming environment. An extended scheme
which provides a stable distributed system is then presented.

Chapter 8 describes an implementation of the distributed
architecture using an experimental system consisting of three
MONADS-PC computers.

Chapter 9 concludes the thesis by summarising the achievements
of this research and indicating directions for future research.

Chapter 2 NETWORKS AND DISTRIBUTION PROTOCOLS

2.0 Introduction

The physical interconnection of discrete computers to form Local Area
Networks (LANSs) is well understood. Processors are typically connected
to a contention bus such as Ethernet [40, 79] or by point to point links
to form a ring which is managed using protocols such as Token Ring
[48], Slotted Ring [91], or Cambridge Ring [85]. These LAN systems
provide a means of reliably transferring messages between nodes at a
speed similar to the transfer of data from a disk.

Higher level protocols build on the message passing facilities provided
by LAN technology to provide services to the user. We consider that
desirable attributes of the resultant network include:

° interconnection transparency: users need have no knowledge of
the fact that they are using a network of processors rather than
a uni-processor,

e location transparency: the name of a resource (e.g. a file or
device) does not define the node on which it currently resides,

¢ naming transparency: the same resource name used on different
nodes will identify the same resource,

* coherency: all nodes have the same view of shared data,

e security: the owner of data has control over access to the data
on a network-wide basis,

e fault tolerance: the ability to fall back to and continue from a
previous consistent state after a catastrophe such as a node
crash.

In this chapter we first describe the ISO/OSI Reference Model [58],
which defines a layered basis for protocol development. Protocols
conforming with this model are currently emerging [52], and the
adoption of the model as a global standard is not expected until the mid

oy

1990's. We then describe existing network architectures based on the
message passing, remote procedure call, and distributed shared
memory approaches.

2.1 The OSI Reference Model

The Open Systems Interconnection (OSI) Reference Model [58]
provides a layered view of network architecture. This approach was
taken ".. to provide a common basis for the coordination of standards
development for the purpose of systems interconnection, while
allowing existing standards to be placed into perspective .." ([58] page
5). The model provides a functional and conceptual framework for the
further development of layer standards while not specifying the actual
implementation of the layers.

The OSI Model provides seven layers, numbered 1 for the lowest layer
up to 7 for the highest. Each layer except for layer 7 provides services
to the layer above it, shielding the higher layer from details of how
those services are implemented. Similarly, each layer except for layer 1
uses services offered by the layer below it. Layer 7 is the means by
which application processes access the services offered by the ISO
environment, and layer 1 provides access for the ISO environment to
the physical communication medium.

As well as using and providing services, each layer entity communicates
with its equivalent layer entity at other nodes in the network according
to a layer protocol. Layers at the same level on different nodes are
called peer layers, and the communication between them is virtual,
achieved using the services offered by the lower layers. Before layer n
entities on nodes A and B can communicate, they must be connected,
which means that communication must exist between the entities
implementing layer n-I on nodes A and B, which in turn means that
communication must exist between layer n-2 entities, and so on down
to layer 1, where physical connection between the nodes exists. This
protocol means that there is a considerable overhead in connection
establishment messages for each layer prior to the communication of
user data.

When a user application message is transported from source node to
destination node by an OSI network, it may pass through several
intermediate nodes en route. Layers 1, 2, and 3 form the
Communication Subnet, which means that they provide the means for
data to travel from a node to the immediately adjacent node. Layers 4,
5, 6, and 7 are called end-to-end layers because communication
between peer layers at these levels is between the implementing
entities at the source and destination nodes, and the layers are not
involved in intermediate nodes.

The layers, and a summary of their purposes as stated in the Reference
Model document are

(1) Physical Layer: provides the mechanical, electrical, functional,
and procedural means for the transmission of bits across
physical connections.

(2) Data Link Layer: takes the raw transmission facility of the
physical layer and transforms it into an error-free facility. Data is
broken up into data frames, which are transmitted sequentially.
Functions performed by the layer include sequence control for
frames, error detection and recovery, reporting of
unrecoverable errors, and flow control.

(3) Network Layer: provides the transparent transfer of data
between the end-to-end layer above, even when the connection
spans several subnetworks that offer dissimilar services.
Functions performed by the layer include routing and relaying,
network connection multiplexing onto data link connections,
error detection and recovery, sequencing, flow control into the
subnet, expedited data transfer (if specified), and management
issues such as statistics and accounting.

(4) Transport Layer: is the lowest end-to-end layer, and shields the
higher layers from knowledge of the underlying network. It can
multiplex a number of transport connections onto a single
network connection, or alternately split a transport connection
over a number of network connections to improve throughput.
Functions performed include end-to-end sequence control on

individual connections, end-to-end error detection and
recovery, end-to-end segmenting, blocking and concatenation,
end-to-end flow control on individual connections, and
expedited data-unit transfer.

(5) Session Layer: provides the facilities necessary for management
of the dialogue between peer Presentation Layer entities. It can
transparently recover from loss of connection, provide
transaction management (useful for distributed database
systems), control interaction so that a full-duplex link appears
as half-duplex or simplex, and maintain synchronisation points
in a dialogue so that reversion to an agreed point and restarting
from that point can occur.

(8) Presentation Layer: is concerned with the syntax of the data. It
can potentially implement three different syntaxes for one
transmission, the originating syntax, the transfer syntax, and
the receiving syntax. The layer can perform transformations
such as ASCII to EBCDIC if required by the hardware of the
communicating nodes.

(7) Application Layer: provides the interface by which an application
process on one host can communicate with an application
process on another host (e.g. file transfer, job transfer, database
access). Services provided are grouped into general and
application specific, though an application may use services
from each each group.

Layers one and two of the OSI model, the Physical and Data Link Layers,
specify a basic message passing facility in which errors are detected
and possibly rectified. In this thesis we are interested in building on
top of such basic message passing, and so we will not discuss issues
concerning basic message passing any further. We simply assume that a
facility providing a Data Link Layer interface is available, and that it is
either working correctly, or not working at all.

2.2 Existing Network Protocols

The interconnection of computers to form networks adds significantly
to the utility provided by a group of discrete computers. Using a
network it is possible for resources such as disks and printers to be
shared by multiple machines. Users appreciate utilities such as
electronic mail, and the ability to access remote computers by remote
login. Application programs running on networked computers can
access and manipulate data stored on other machines. Implementing
such facilities requires that processes running on separate computers
communicate with each other via the network. The term for the
communication between processes is Interprocess Communication
(IPC). IPC between processes executing on the same processor is
trivial. IPC between processes executing on different processors may be
of several forms.

Tightly coupled multiprocessors, as commonly used for parallel
processing, achieve IPC through the use of shared physical memory
connected to a common bus which allows a process running on one
processor to deposit data in a memory location, and a process running
on another to subsequently access the data by a simple memory read.

Physically distributed processors are not connected to a common bus,
and thus cannot share physical memory. IPC can occur between
processes running on physically distributed processors using a number
of different protocols, including message passing, Remote Procedure
Call (RPC) [116, 124] and Distributed Shared Memory [112].

Message passing involves the depositing of data into a message block by
the sending process, the making of the message available to the
receiving process, and the subsequent reading of the data from the
message block by the receiving process.

RPC allows a process to invoke a procedure running on a remote
processor, and to transmit and receive data back in the form of
parameters to the procedure call. Implementation of RPC requires the
existence of an underlying message passing system.

Distributed Shared Memory (DSM) is another paradigm that allows IPC.
DSM provides the abstraction of a shared physical memory to processes

- 10-

running on processors that are not tightly coupled. It has the advantage
that processes can share data structures like arrays and linked lists as
well as the flat data that can be logically shared using message passing
and RPC.

2.2.1 Message Passing Systems

Message passing systems effectively extend the underlying
communications mechanism by allowing shared information to be
passed by value. There are a number of message passing systems in
general use. These include IBM's SNA [78], OSI based MAP and TOP
[52], and TCP/IP [30]. In this section we concentrate on TCP/IP, which
appears to be a defacto standard on workstation-based local area
networks.

The Transmission Control Protocol/Internet Protocol (TCP/IP) [30]
defines a set of protocols which allow the interoperability of computer
equipment connected to a LAN. The LANs may then be further
connected by gateways to form a virtual wide area network (WAN)
known as an internet. Users of the internet are offered a range of
services including electronic mail, file transfer, and remote login.

The protocols make no assumptions about the underlying network
hardware or type, meaning that it is possible for computers connected
to different network types to communicate as long as the networks
themselves are connected by a gateway. Each computer connected to
an internet is assigned a unique name, called an IP address defining
both the network to which the computer is connected, and the
computer itself within that network. This address is not the same as
the physical node address that allows the network hardware to identify
the computers connected to each individual LAN. In this sense a
TCP/IP network is virtual.

IP breaks messages up into small units called packets or datagrams. IP
communication is connectionless, meaning that each packet contains
the full source and destination addresses, and is routed separately. An
applications programmer using a connectionless service like IP to
achieve communication must handle issues such as flow control,
acknowledgements, and error control in the application code, because

-11-

packets can be lost, duplicated, or delivered out of order. Provision of a
general purpose protocol that allows application programs to transmit
large quantities of data, called streams, without concern for each
individual packet used in the transmission is provided by TCP.

TCP is a higher-level stream delivery protocol built on top of IP. It is a
full connection oriented protocol providing a full duplex virtual circuit
between the communicating parties. This means that, once a
connection has been established between the source and destination
entities, the application programs can transfer data over the
connection while the protocol monitors the connection for errors and
attempts to rectify them. If an unrecoverable error such as hardware
failure occurs, the communicating applications are informed by the
protocol that the connection has been lost. The advantage of
connection oriented services such as TCP over connectionless services
is that they can provide a reliable data transfer facility to the application
program. A disadvantage of the building of TCP on top of IP (a
connectionless facility) is that a TCP connection is virtual, with no
guaranteed bandwidth, meaning that network congestion can cause
fluctuations in the speed of data transfer provided by the connection.
Even though the full protocol suite extends far beyond the IP and TCP
protocols, it is called TCP/IP because of the importance of the stream
delivery service provided by them.

Since we are concerned with LANs in this thesis, we will consider
TCP/IP only as used within a single LAN. One of our requirements of a
good network system is location transparency, and the first step in
achieving this is the provision of a virtual name for a node rather than
the physical name that is used by the network hardware to pass data
from one node to another. The TCP/IP virtual name for a node is its IP
address, and nodes with attached disk store their IP address on that
disk. The method used by a computer connected to a TCP/IP LAN to
determine the physical address of another machine, and its own IP
address if it is diskless, is of particular interest to us in this thesis
because of our location transparency requirement.

Dynamic mapping between virtual TCP/IP addresses and physical
network addresses, and vice versa, is achieved using the Address

- 12-

Resolution Protocol (ARP) and Reverse Address Resolution Protocol
(RARP).

ARP allows mapping from internet addresses to physical addresses.
Consider node N; which wants to communicate with node Ns, but
which only knows Njy's internet address I». N; broadcasts a special
packet requesting that the node with internet address I supply its
physical address Pj. All nodes, including Nj, receive the request, but
only Ny responds (other nodes use the message to update their address
mapping table with N;'s data if necessary). On receipt of the response,
N; stores the internet to physical address mapping, and can now
communicate with N,

RARP allows a node to find out its own internet address (particularly
useful for diskless nodes), and relies on the existence of at least one
RARP server. RARP servers maintain a table mapping physical to
internet addresses for all computers connected to the LAN. If node N;
wishes to know its internet address, it broadcasts a RARP packet
containing its own physical address P;. The RARP server(s) respond by
transmitting a packet containing the required internet address I;. The
existence of multiple servers can be advantageous in the case where a
server is busy when the RARP request is sent, but can result in
contention problems in Carrier Sense Multiple Access with Collision
Detect (CSMA/CD) networks when several servers attempt to reply
simultaneously.

TCP/IP is a widely used and popular suite of protocols. When
considered with respect to our desirable network attributes, however,
it does not perform well for the following reasons:

e users are very aware of the fact that they are connected to a
network because local commands are different to remote ones.
For example, mail to a local user requires provision of the user's
name only, whilst mail to a remote user requires the provision
of location information. Of course this can be hidden by
application specific mechanisms such as aliases that sit above
TCPR/IP;

= 15-

e access to a resource requires knowledge of the location of the
resource because all access is achieved by use of the internet
address, which defines location. Aliases, and higher level
protocols such as Network File System (NFS) [111], however,
can be used to hide the differences between local and remote
resources by providing a flat name space,

e location forms part of the internet name for a resource. Thus a
resource name defines the resource for all nodes other than the
host node, where the internet address is not needed,

e there is no provision for shared data in TCP/IP other than
sharing by use of remote login, such sharing being controlled by
the host operating system,

e control over access to data is limited to the protection
mechanisms provided by the operating system running on each
node, and

e there is no provision for fault tolerance.

2.2,2 Remote Procedure Call Systems

The tacit assumption in the setting up of connection oriented
communications is that both parties initiate the transmission of data,
and the full duplex nature of the link in fact provides the facility for
data to travel in both directions simultaneously. In many situations this
assumption is incorrect. A file server, for instance, transmits data only
in response to a request from another node. The node in this situation
is called a client, whilst the file server is a server. The request-
response nature of the communication between a server and a client is
similar to the situation in which a program calls a procedure, and is
returned a result. Researchers such as Birrell [17] have adopted this
view, and developed mechanisms by which request-reponse
communication can be achieved using procedure calls in application
programs. This type of communication is known as Remote Procedure
Call (RPC).

-14-

Implementations of RPC require an underlying virtual network to
transfer the procedure call message between nodes, and many use the
virtual network provided by TCP/IP, for example Sun RPC [110], Apollo
NCA/RPC [42], and Mayflower RPC [13]. The application programmer
view of RPC varies between implementations. Some provide an
interface which makes RPCs look the same as local procedure calls, e.g.
Cedar [17], whilst others intentionally provide different syntax for local
and remote calls, e.g. Mayflower [13]. Neither type of implementation is
able to handle parameters of the complexity possible with local
procedure calls. This is because complex data structures are built using
pointers, and pointers are meaningless when taken out of the context
in which they are created. A review of RPC implementations is
contained in [116].

As described in [115], RPC may be implemented by linking one or more
library procedures called stubs into the client's address space. Stubs
can initiate messages to servers, and receive replies. An application
program can make a procedure call to a local stub, which then collects
the parameters to the call into a message. The stub then calls on the
local transport protocol entity to transmit the message to the server
machine. The message is passed to the appropriate server process stub,
which unpacks the parameters, and calls the server procedure with a
local procedure call. The server procedure is thus unaware that it is, in
fact, being activated remotely. The return to the RPC is achieved in
similar fashion, with the effect that a client-server communication
takes place.

RPC implementations can be classified as either blocking or non-
blocking. Blocking RPC suspends the calling process while the RPC is
being processed, and so is a true simulation of local procedure call.
Non-blocking RPC allows the calling process to continue immediately
without waiting for the returned result, thus approximating a message
passing system that explicitly invokes a remote procedure rather than
relying on a remote process receiving and replying to a message. Most
implementations of RPC provide for optional blocking or non-blocking
operation, with no compulsory result being required for the non-
blocking form.

- 15-

Transport protocols can be optimised for use with RPC. The V Message
Transport Protocol (VMTP) [26], for instance, has been designed to
perform best for the request/response communication used in RPC.
Rather than establishing and releasing connections as in OSI, the
VMTP protocol provides connection establishment with the delivery of
a request message. The connection status is dynamically updated with
the receipt of subsequent requests. Receipt of a message is
acknowledged by the response, so that a typical RPC communication
consists of only two messages, a request and a response. Another
optimisation used by V [27] and Amoeba [84] is improvement to
buffering. Invocation of RPC results in the calling program setting up
buffer space from which request data is directly transmitted and into
which the response is directly written, meaning that creation of
intermediate message buffers and copying to and from these is not
necessary.

RPC itself has been used in the implementation of distributed operating
systems such as Amoeba [84], distributed application development
environments such as Mayflower [13], and operating system utilities
such as Sun's Network File System (NFS) [111].

2.2.2.1 Distributed Operating Systems and RPC

Distributed operating systems attempt to provide the abstraction of a
centralised time sharing system to users. This abstraction is achieved
using multiple processors connected by a network. Details such as the
location of files, the interconnection and communication mechanisms
used, and the processor being used are hidden from the user by the
system. Examples of distributed operating systems are Locus [92], V
[27] and Amoeba 4.0 [84]. We examine V and Amoeba 4.0 in more detail
as they are the most recently released systems, and tackle a number of
problems that are similar to those encountered in the work covered by
this thesis.

22211V

The V project [27] is a continuing research project which aims to
provide the resource and information sharing facilities of a centralised

- 16-

system by controlling a cluster of high-performance workstations and a
high-speed network with a distributed operating system. The V
distributed operating system consists of a kernel that runs on each of
the connected workstations, and services that are implemented at the
process level. The kernel provides network-transparent address spaces
in which processes run, lightweight processes that can share an
address space, and IPC which is achieved by blocking RPC. The kernel
thus provides the means for connection between applications and
service modules without itself implementing most services. Services
that are implemented in the kernel include those that manage
processes, memory, communication, and devices.

Processes, process groups, and communication endpoints are
identified by unique numbers called entity identifiers. These are 64 bit
binary values that are host-address independent, meaning that a
mapping is needed between entity identifiers and host addresses. This
mapping is maintained by the kernel using a mapping table along with
multicast messages to query other kernels about mappings that are not
currently in the table, or to update the table after, for instance, process
migration. To ensure that identifiers are unique on a network-wide
basis, the node kernels cooperate in allocation of identifiers to ensure
not only that a proposed identifier is currently unused, but also that an
identifier has not been recently used. This second proviso is necessary
because of the finite size of entity identifiers, which means that reuse of
the identifiers eventually becomes necessary. It is designed to minimise
the possibility that use of an entity identifier could result in access to
the incorrect process. This could occur if the original process had
terminated and the identifier had been reused while an entry mapping
the entity identifier to the old process still existed in a kernel mapping
table.

IPC is request-response based. Client processes use the kernel send
primitive to request a service from a server process. Servers may
implement either the message or RPC modes of operation. The mode of
operation of the server process is not apparent to the client process
because it blocks pending a response from the server. If the server
implements the message mode, it uses the receive kernel primitive to
receive the next request message. It invokes a procedure to process
the request, and sends a response back to the client process. If the

-17-

requested server process is busy, the request message is queued up,
thus providing serialisation of requests. In RPC mode the server
executes as a procedure invoked by the client process. The use of the
RPC mode allows the concurrent handling of server requests, with its
associated performance benefits. Send kernel calls are trapped by the
local IPC module if the server is local, and handled by the network IPC
module otherwise.

To achieve IPC, the client uses the send kernel primitive to make a call
with data (parameters) in a client-supplied buffer, and the response
data is delivered by the kernel into this buffer. The network issues of
error handling and flow control are catered for by the use of the
response message both as acknowledgement and authorisation to send
the next request. Messages are of a fixed length of 32 bytes, but a data
segment of up to 32 kilobytes in length may be attached. The kernel
interface, buffering, and network packet transmission and reception
are optimised to handling the 32 byte fixed length messages because
more than 50% of the V network traffic is short messages. The V
Message Transport Protocol (VMTP) [26] is used for network IPC. This
protocol performs well under request-response usage because there is
no explicit connection establishment or release phase as exists, for
instance, in OSI. VMTP connection occurs with the receipt of a client
request, and is updated with each subsequent request. Short messages
are incorporated into the message header. Each process descriptor
contains a template VMTP header, with some fields initialised on
process creation, reducing the time taken to prepare a send packet. A
short message is loaded into application registers, copied into
processor registers and written into the process descriptor header
template, which is then queued for transmission. It is interesting to
note that V network IPC time measurements indicate that it is faster to
import an 8KB block of data already in the physical memory of a remote
node than it is to load the same block from local disk [27].

VMTP supports multicast, the sending of a message to a group of
destinations. Multicast is used, for example, for dissemination of load
information as part of distributed scheduling, and for synchronisation of
the V time servers. Processes may be collected into groups, for
example the group of file servers or the group of processes executing a
certain parallel program. Group identifiers belong to the same name

- 18-

space as process identifiers. A group send can contain a qualifying
process identifier or process group identifier. This can be used to
address from a group of servers, the particular server(s) acting for the
identified process(es). An example of the use of this facility is process
scheduling, which is distributed with one process scheduler per node.
A suspend operation on a process P is achieved by sending a message to
the group of process schedulers with P's process identifier provided as
a qualifier. The kernel routes the message to the host node for P (using
the entity identifier to host addresses mapping table), meaning that it
is delivered to the process manager responsible for P, and not to the
other process schedulers. A client knowing the identity of a group of
servers can thus request an action on a process without knowing the
identity of the specific server responsible for that process.

The V kernel maintains the physical memory as a cache of pages from
open files. The address space in which a process runs is organised as
set of ranges of addresses called regions. Each region is bound to a
portion of an open file and provides the process with a window onto
that portion of the file. The kernel manages the binding of regions to
open files, the caching of blocks from the open file, and the
maintenance of consistency. Consistency is achieved using locking at
the file server together with a block ownership protocol. When an
address space is initialised prior to program execution, an address
space descriptor is allocated and the program file is bound to the
address space. The process references a virtual address in the address
space causing a page fault to occur, because binding between the
address space and a cached copy of the addressed portion of the
program file has not been set up. The kernel maps the referenced
virtual address to a block in the program file, and if the block is in the
kernel page cache it binds the block to the process' address space. If
the block is not in the kernel page cache, it is requested from the
server that is managing the program file and mapped into the process
address space when it arrives. Thus there is no need for a kernel
program loading mechanism. Program access to permanent data is
achieved in a similar fashion after the newly opened file is bound to a
region of the address space.

The term object in V means a resource, for example a process, an
address space, a communications port, or an open file. All servers are

- 19-

effectively object managers and implement names for the set of objects
they manage, meaning that an object specified by name can be handled
by the server without reference to a name server. This relies on the
client process being able to determine which server handles the object.
When an object manager creates a directory of object names, it
allocates a globally unique directory name that is used as a prefix to the
names of all objects in the directory, and adds itself to the name
handling group of processes. The manager for any object can be found
by multicasting the character-string object name to the name handling
group. When a program is initiated, a table of name prefix to object
manager mappings is initialised, and this table is maintained while the
program runs. Table entries are not updated immediately by some
coherency protocol whenever a described mapping changes. The
approach taken is that out-of-date data is detected when the data is
used. When an operation is invoked on an object manager using a stale
name mapping, the operation will fail, resulting in the deletion of the
incorrect table entry and its replacement after a multicast query
obtains the correct mapping information.

Once a character-string name has been mapped to an object, for
example on a file open operation, an object identifier is used in
subsequent references to the object. Object identifiers are formed by
the concatenation of the object manager-id with the local-object-id.
The manager-id is an IPC identifier specifying the manager that
implements the object, whilst the local-object-id specifies the object
relative to the manager. When a manager crashes, its manager-id is
invalidated. A new id is allocated to an object manager on restart of the
manager, or on reboot of the system. Thus object identifiers can only be
allocated to objects such as open files or address spaces that have a
shorter lives than their managers, and character-string names are used
for long-life objects such as files.

If an object manager is replicated or distributed across nodes, a client
uses the manager group identifier to access the server implementing
the required object, and then the specific server identification for
subsequent accesses. If the object migrates or the server entity crashes,
the client receives an error message on the next access, and must then
revert to the server group identity to allow rebinding to the new
implementing server entity. Operations such as replicated file writes

- 20-

use the group address to perform updates on every copy, ensuring that
every replica is updated by checking off response messages against its
list of individual servers.

In terms of our stated desirable qualities, V performs quite well. A V
network provides an abstraction of single-machine operation in which
the user need not know about the distributed nature of the resources
he is using. Resource naming is location transparent in that the name
prefix defines the server or server group that implements the resource,
not the physical location of the resource. Naming transparency is also
provided because resource names are unique at the server level,
meaning that once the server identity prefix is added the name is
network unique. A rudimentary coherency scheme ensures a consistent
view of shared data. Naming lacks uniformity because of the difference
between long term object names and short term object identifiers.
Security and fault tolerance are not strong features either, although
work is in progress on a distributed atomic transaction protocol which
should assist fault tolerance.

2.2.2.1.2 Amoeba 4.0

Amoeba is a distributed operating system consisting of a distributed
kernel and suite of services accessed through the use of RPC. The
hardware it controls is categorised as consisting of four components

* workstations which execute processes such as window
managers and editors that require constant user interaction,

°* pool processors which provide most of the processing power,
typically consisting of many single board computers each having
private memory and a network interface,

° specialised servers which run dedicated processes with special
resource demands (e.g. file servers run best on machines with
disks), and

° gateways to other Amoeba systems that are accessible only over
wide area networks (WANs). The gateways shield local nodes
from knowledge of WAN protocols.

-921-

Amoeba is object based, with an object being defined as "a piece of data
on which well-defined operations can be performed by authorised
users" [84]. Objects are accessed and protected by use of unique object
capabilities. Capabilities are kept secret by randomly choosing them
from a 128 bit wide sparse name space, and are protected from illegal
modification by the inclusion of redundancy and a checksum field. Each
object is accessed by a service port whose identity forms part of the
object's capability. Objects are managed by servers. A server is
implemented as a lightweight process that shares the address space of
the object. Multiple server processes can jointly manage a group of
similar objects providing a service. Client processes use RPC to request
servers to carry out operations on objects.

A server process indicates its willingness to accept requests to a
particular service port using a system call called a get_request. This
informs the kernel that the server is prepared to accept messages
addressed to the port. Get_request calls are used by the kernel to
maintain an internal table mapping service ports to servers. Client
processes perform RPC using the do_operation system call which
contains the capability for the object and an operation code (which
defines the selected operation) as a parameter, and server processes
reply to the RPC using the send_reply system call. Amoeba RPC is
blocking, meaning that client processes are suspended until a reply is
received.

When a client calls do_operation, the local kernel extracts the service
port identity from the presented object capability (the capability is
verified by the server) and checks its internal table in an attempt to
find a server implementing the service. It is possible for a kernel to
receive a do_operation for a service port for which it knows no server
location, or for a port whose server has died or migrated since data for
that port was inserted. In this situation a message is broadcast by the
kernel seeking another kernel with an outstanding get_request for the
port. If a reply is received, the port/network address pair is stored for
future reference and the RPC can continue.

To shield users from knowledge of the binary capabilities used to
access objects, a central directory service is provided. Directory entries
consist of name/capability pairs. The basic operations possible on

929

directory objects are lookup, enter, and delete. Arbitrarily complex
graph structures can be built because directories are themselves
objects, meaning that capabilities for directories can be included in
other directories. Users must, however, possess a capability for the root
directory of such a structure in order to traverse it. The directory
service replicates its internal tables on multiple disks so that single
node failure will not prevent it from operating.

The Amoeba file service, the bullet service, is unusual because files are
immutable, meaning that a file cannot be modified once it has been
created. Files are also contiguous both on disk and in bullet server
cache, so the only management information needed for a file is its start
location, size, and ownership information. The only file services
supported by the bullet service are read, create, and delete. Creating a
file involves writing all the data in one operation, and receiving a
capability for the file. Typically, a file name would then be assigned and
a directory entry made.

Data consistency for sets of objects (atomicity) is possible through the
provision of an atomic update facility in the directory service. This
facility allows atomic changes to be made to the mappings between sets
of names and sets of capabilities. Thus if an atomic update of a set of
objects is required, the modified versions are written to new files, and
the new capabilities for the files are entered as a single operation into
the directory.

There are two possible states for Amoeba processes, running or
stunned. A stunned process exists, but does not execute instructions.
Stunning is used for program debugging, and for process migration.
When a process is stunned, the kernel passes its state in a process
descriptor to a handler, which is a service that handles anomalies such
as process exits and exceptions for the process. The capability for a
handler is included in the process descriptor for every process.

Process migration is achieved by stunning the process, after which the
handler passes the process descriptor to the new host. The new host
copies the memory contents relevant to the process, then restarts it.
The new capability for the process is passed to the handler, which kills
the process at the old host. Attempts to communicate with a migrating

- 93-

process receive 'process stunned' replies until the process is killed,
and 'process not here' replies after the process is killed. The new
process must then be located as described above before communication
can resume.

Processes exist in a segmented virtual address space. Segments can be
mapped into and out of this address space. Segment mapping
operations can be accompanied by a capability. A process can unmap a
segment, which remains in memory (though not in the process address
space), and pass the capability for the segment to another process
which can map the segment into its address space. If the processes are
running on different machines, the segment must be copied between
their memories.

The use of service ports as a means of accessing the server(s) that
implement a service introduces a potential security problem. Service
port identities are large binary strings (48 bits), and knowledge of a
port identity is sufficient to allow access to the port. A server will only
perform a requested service if a valid and appropriate capability is
presented with the request. It is possible with such a scheme for a
malicious process to pretend to be a server by issuing a get_request on
a server port. The process could then wait for calls on the service, and
illegally collect the object capabilities that accompany such calls. The
solution used in Amoeba is to place an interface box or F-box between
each processor module and the network. This device, which can be
implemented in software (e.g. in a trusted operating system), or in
hardware, transforms all messages entering and leaving the processor.

Under the F-box scheme, each service port is represented by two
ports, a privately known get-port G, and a put-port P known to server
clients. The F-box implements a publicly known one way function F,
where the relationship between P and G is P = F(G). To indicate its
readiness to accept client requests, a server uses the get_request
system call, including its get-port identity G. The F-box computes the
corresponding put-port identity P, which is made available to clients.
Clients use P when making requests on the server. The client's F-box
does not transform P in the outgoing do_operation message. A process
wishing to masquerade as a server does not know the private get-port
identity for the real server, and so cannot provide the correct G

- 24-

parameter for the get_request system call. The one-way property of F
prevents the bogus server from calculating a value for G that will result
in its local F-box presenting the correct P identity to clients. Replies
from the server to the client are similarly protected, with the client
using a get-port G’ and including P’ = F(G') in the do_operation
message.

Amoeba 4.0 is successful in providing an abstraction of a single powerful
central processor using a pool of lower powered processors. Resource
location transparency is provided through the use of location
independent service ports as a means of access to service
implementations. Access to objects is achieved by object capabilities.
which provide naming transparency and protection. The combination of
service ports and capabilities potentially allows a malicious process to
masquerade as a server and illegally obtain object capabilities. To
prevent this an encryption scheme has been developed for the server
part of object capabilities. Consistency of information and fault
tolerance are Amoeba's main weaknesses. The atomic update facility
provided by the directory service provides consistency at the
(immutable) file level but is unsuitable for transaction-oriented
applications, whilst fault tolerance at the data level has not been
tackled yet. Although the directory replication scheme reduces the risk
of reliability problems with the centralised directory service, it is a
potential source of bottlenecks.

2.2.3 Distributed Shared Memory Systems

Whilst message passing and RPC provide shared access to data by value,
shared memory systems allow processes to access data in a shared
memory space by reference. This means that knowledge of the address
of data in the shared memory space is sufficient to allow the process to
access the data. Processes in such an environment are able to share
arbitrarily complex data structures such as linked lists that rely on the
following of pointers, without the need to flatten and rebuild the
structures as required by message passing and RPC.

If the processors are loosely coupled, there is no physically shared
memory, so the underlying communications system is used to provide

- 95

an abstraction of a shared memory space. To understand how this
abstraction is achieved, it is helpful to look at how virtual memory
management can use a relatively small physical memory together with
disk storage to provide the abstraction of a large physical memory.

Virtual memory (VM) managers partition the virtual address space into
smaller blocks. Some implementations use fixed length blocks called
pages, and others use variable length blocks called segments. The
available physical memory is similarly divided. The processor generates
virtual addresses, and a mapping mechanism is used to locate in
physical memory the VM block containing that address. The physical
memory location corresponding to the virtual address is then found
using its offset relative to the beginning of the block. The VM block
containing the accessed virtual address may not be in the physical
memory at the time of access, creating a condition called a fault. To
enable resolution of faults, another mapping is maintained between VM
blocks and their location on disk, so that, if a block is not in physical
memory when an address in the block is accessed, the VM manager
can copy it from disk.

Distributed Shared Memory (DSM) extends the VM concept across the
physical memories of multiple computers that are connected by a
network. These computers are called nodes. When a processor accesses
an address in DSM, and the required data is not in the physical
memory of the node, a fault occurs. Resolution of the fault may involve
importing the block from another node into local physical memory
using the network. The fact that the blocks of a DSM VM space are
distributed across multiple nodes creates problems not experienced by
single physical memory VM implementations. The major problem is the
maintenance of a consistent view of the DSM across nodes. This
problem is similar to the problem of cache coherence in
multiprocessors, as discussed in [71, 75, 108], and the solutions
adopted, which are discussed below, are similar to those used for
multiprocessors. Other problems include the location of DSM blocks,
the protection of data from illegal access, and coping with unexpected
node or network failures. DSM does have significant benefits which
makes solving these problems worthwhile.

- 96-

DSM allows the sharing of data between physically distributed machines
without the need for application programmers to write network
specific code. This is possible because the shared memory is
implemented underneath application programs, meaning that
programs access remote data in exactly the same way as they access
local data.

There

are four basic algorithms for providing distributed shared

memory [109].

(1)

(2)

(3)

The Central-Server Algorithm provides a single page server
which maintains the only copy of shared data, and which either
provides data on request or stores modifications to the data.
Because a central server has to process requests from all nodes,
bottlenecks can occur. These can be reduced by use of several
servers allocated a range of addresses each, with other nodes
having knowledge of the mapping from address to server node.
This scheme is called Distributed Centralised Server, and is
unimplemented to our knowledge.

The Migration Algorithm is a single reader/single writer
scheme in which data is always migrated to the reading or
writing site. For efficiency reasons it is usual to migrate the data
in blocks, so that programs exhibiting high locality of reference
have reduced communication costs. If several processors
require simultaneous access to the same block, thrashing can
occur. As discussed in [74], remote blocks may be located by
broadcast, but strategies such as the use of a number of
managing servers can be used to improve efficiency. As a result
of the ease of conversion of an implementation of this algorithm
to the superior read-replication algorithm, no practical
applications of the migration algorithm are known.

The Read-Replication Algorithm allows multiple readers of a
data block, reducing the communications overhead for
frequently read blocks. The algorithm is multiple reader/single
writer similar to the cache coherence protocols described in
[36, 71, 75] and is implemented in IVY [74], Memnet [36], and
Choices DVM [59].

-97-

(4) The Full Replication Algorithm allows multiple readers and
multiple writers for a block of data, employing sequencing of
reads and writes to maintain consistency. Sequencing is
achieved by use of global time stamps on writes and sequencing
reads relative to local writes as described in [6] for cache
coherence. Such a scheme has not yet been implemented.

In the following sections, we describe several implementations of
Distributed Shared Memory.

2.2.3.1 Abramson and Keedy

The first distributed shared memory scheme, proposed in [3] and on
which this work is based applies to a paged virtual memory. The blocks
of data transferred between nodes are the same size as a virtual
memory page, allowing page transfer to be handled as part of the virtual
memory management. Each page has a static owner whose identity can
be derived from the address of the page, meaning that finding the
location of a page is always efficient. The owner of a page is responsible
for maintaining a multiple reader/single writer protocol. The scheme is
essentially a combination of Distributed Centralised Server and Read-
Replication because, while a single node is responsible for the provision
of a particular page of data, multiple read-only copies of the page can
exist simultaneously in the main memories of computers connected to
the network. This scheme will be more fully described in chapter 5.

2.2.3.2 IVY

IVY [74], which is aimed at improving the performance of parallel
processing by use of DSM, provides each of the parallel processes with
an address space which is partially private and partially shared. For the
shared address space, it implements a dynamic page distribution
scheme in which each page has an owner but ownership is moved from
node to node as the page migrates. The owner of a page is responsible
for maintaining a list of nodes having a read-only copy of the page called
the copy set for the page. If a node wants to write to the page it must
become the owner of the page. The owner at the time of the write
request transmits the page, and the copy set to the requesting node

- 98-

(unless the owner itself is the node requesting write access), and the
receiving node becomes the new owner of the page. The new owner
must then transmit invalidation messages to each member of the copy
set, thus eventually becoming the only node with a copy of the page and
able to write to the page. If another node wishes to read from the page,
the owner changes its access to read-only, transmits a copy of the page
and updates the copy set.

Each node maintains a complete copy of the page table of the
distributed virtual memory containing, amongst other information, the
probable owner, probowner, of each page. A node changes the
probowner information for a page in its copy of the DSM page table if

* it receives an invalidation message for the page, in which case
the probowner becomes the source of the message, or

e it relinquishes ownership of the page, in which case the new
owner is the new probowner, or

* it receives a copy of the page (to resolve a read fault), in which
case the provider of the page is the probowner, or

* it forwards a write page fault request, in which case the source
of the request is the probowner because the source of the
request is expected to become the owner in a short period of
time.

Over time the ownership of a page can vary considerably, and it can
become necessary for a page request message to pass through a chain of
nodes before a page is found. To make location of pages more efficient,
ownership information is regularly broadcast so that nodes can update
the probowner field of their page table.

A major disadvantage of IVY is the fact that every node maintains a full
page table of the shared memory, together with the status information
for each page, in the local memory of the node. As the shared memory
space grows, so does the associated page table at each node, meaning
that the IVY system is not scaleable to large shared virtual memories.
IVY provides naming and location transparency for data in the DSM
because such data is accessed by unique virtual address, and shared

- 99-

memory page tables contain probable owner information. There is no
described notion of protection of access to data in the DSM, or of fault
tolerance.

2.2.3.3 MemNet

MemNet [36] was an attempt to overcome the input/output (I/0) view
of a network, which uses kernel calls to initiate network traffic.
MemNet instead provides memory extension through the connection of
each node, using a special-purpose MemNet device, to a high speed
token ring. The MemNet device takes the processing of communication
protocols away from the CPU, connects to the local bus, and provides
access to remote data at local bus speed.

Advantages of using a ring topology are listed as

* the access time for each ring interface is limited to an absolute
upper bound, meaning that the time taken to send a message
and receive a reply is bounded

e the token ring provides an explicit broadcast, with each ring
interface seeing each packet

e all interfaces see the same ordering of ring transactions, making
data consistency easy to implement

e ring accesses are overlapped, providing a pipelining effect
because multiple transactions can be on the ring simultaneously

The MemNet device provides the host node with access to a paged
shared address space. The pages, or chunks, are small at 32 bytes each,
and are allowed to migrate between MemNet devices as required.
Internally, each MemNet device consists of an interface to the host
node's system bus, an interface to the token ring, and some local
memory that is divided into a cache and a reserved area. The sum of
the reserved areas of all MemNet devices must be sufficient to store all
the shared memory chunks since the system does not support disk
paging. A chunk must be in the cache section of the MemNet memory

of the device attached to a node before the node can access an address
in the chunk.

A reference to an address in the shared address space is sent to the
MemNet device, which determines if the reference can be satisfied
locally. If not, a message is sent on the ring. The device that is able to
satisfy the request does so by modifying the request message to include
the required chunk, meaning that a chunk fault can always be resolved
in one circuit of the ring. Since the response is predictable and very
fast, the MemNet device does not differentiate between accesses to
addresses held in the local cache and those requiring message
transmission. It simply blocks the local processor, rather than the
running process, in each case.

The coherence scheme used by MemNet is single-writer/multiple-
reader. Each MemNet device maintains a chunk table with an entry for
every chunk in the shared memory. The attributes or tags maintained
for each chunk include

* valid, is there a valid copy of the chunk in the local cache?
* exclusive, has this node exclusive access to the chunk?
* reserved, is the reserved space for this chunk at this node?

e clean, is this chunk unmodified, meaning that it can be flushed
without updating the reserved area copy of the chunk?

° cached location, where is the chunk in the local cache, if
present?

Operations on MemNet shared memory are read, write, and an atomic
read-modify-write (RMW). Before data contained in a chunk can be
read, the attributes for the chunk must have the valid tag set. If valid is
not set, the device sends off a request for a valid copy of the chunk. If
the provider of the chunk has exclusive access to it, the exclusive tag
must be unset before the chunk is transmitted.

A write operation can continue on a chunk if the valid and the exclusive
tags for the chunk are set. If the valid tag is set and the exclusive tag is

-31-

not set, then an invalidation message must be broadcast so that other
devices can invalidate their copy of the chunk. If neither the valid nor
the exclusive tags are set, a message is broadcast requesting a valid and
exclusive copy of the chunk. The first receiver invalidates its copy and
includes a copy of the chunk in the message. The other devices with
valid copies invalidate their copies as the message passes them.

The start of a RMW sequence results in the valid and exclusive tags for
the chunk being checked. If they are not both set, actions as described
above are initiated. When they are both set, the chunk address of the
subject word is stored in a special RMW register. Any request arriving
from the network for that chunk is delayed by transmission of a wait
packet until the RMW sequence is complete or until it is terminated
because of a delay in the write operation, after which the requested
chunk is transmitted.

Consistency of the tags is crucial to shared data coherence. Such
consistency is ensured by the Network/Local Tags protocol, which is
followed by each device. The protocol relies on the fact that ring
messages are sequential, and so are received by each device in the
same order. The local tags for a chunk are read every time a packet
referring to that chunk arrives, and the tags, with the packet opcode
and a local state bit (that indicates whether the packet was transmitted
by this node) determine the actions of the device and the next state of
the tags.

Eventually it will become necessary to purge a chunk from the local
cache to make room for a new chunk. When a chunk is purged, it is
transmitted on the ring and stored in the reserved memory of the first
device that has the reserved bit set for the chunk. That device may
itself have no free space in its cache memory, but the reserved space is
guaranteed to be available for the chunk. MemNet allows multiple
devices to have reserved space for the same chunk, though the impact,
if any, of this feature on the performance of the system is as yet
unknown. The chunk replacement scheme used is modified random
replacement. Each device monitors the chunks passing its ring
interface, constantly updating the clean tags for each chunk. Chunks
with the clean tag set are the first ones to be purged on cache flush
because there is guaranteed to be a copy of the chunk in the cache of a

-32-

device that has reserved space for the chunk, meaning that the purge
does not involve a message to update the reserved location.

As with IVY, the MemNet shared memory is not efficiently scaleable to
large shared virtual memories because a page (chunk) table for the
entire shared address space, together with the associated status
information (tags), is maintained at every node in the network. The
nature of the ring network used also places a restriction on the
scaleability of the system. Location transparency is provided by the
ring-based chunk request mechanism, and naming transparency is
provided by the unique virtual addresses used to access data. There is
no protection of access to data, and no provision for fault tolerance.

2.3 Conclusion

Many protocols that enable the exchange of data between physically
distributed computers have been implemented. These protocols are
typically based on message passing, remote procedure call (RPC), or
distributed shared memory (DSM). Remote procedure call and
distributed shared memory systems rely on an underlying message
passing system, abstracting over details of this underlying system.

The abstraction provided by RPC is of a request-response relationship
between processes executing on possibly distributed processors. This
means that a client process makes requests of a some other server
process in a similar fashion to procedure calls within a single program.
Using RPC, for instance, a client process executing on one computer
may request provision of a block of data from a disk server process
executing on a second computer. The RPC abstraction thus allows the
sharing of data by value using the familiar procedure call mechanism. A
consequence of this is that dynamic data structures such as lists must
be flattened prior to sharing because the inclusion of pointers is only
meaningful if the data is located in exactly the same place in the
client's virtual memory space. In a sense this is similar to the flattening
of data structures for storage on disk.

DSM allows the sharing of data by reference, meaning that a process
may directly access any data, local or remote, by address. An immediate
advantage of this is that dynamic data structures may be shared without

-a33-

the need for flattening and reconstruction. The DSM abstraction is
typically provided using similar techniques to those used in virtual
memory management, with data being provided in chunks analogous to
virtual memory pages. A problem common to the small number of DSM
systems previously implemented is that they require the maintenance
of a full page table at each node in the network. This means that
provision of a wide shared virtual memory space requires the
dedication of a large amount of local main memory for the storage of
this table. As a result the existing implementations are not scaleable to
large virtual memories. Other problems associated with existing DSM
implementations include the lack of control over access to data, and
the lack of techniques to cope with node or system failure, with its
associated impact on the integrity of the store and the data structures
necessary to maintain it.

Chapter 3 PERSISTENT SYSTEMS

3.0 Introduction

Persistent systems support mechanisms which allow programs to
create and manipulate arbitrary data structures which outlive the
execution of the program which created them [9]. This has many
advantages from both a software engineering and an efficiency
viewpoint. In particular it removes the necessity for the programmer to
flatten data structures in order to store them permanently. Such code
for the conversion of data between an internal and external format has
been claimed to typically constitute approximately thirty percent of
most application systems [9]. In this sense a persistent system provides
an alternative to a conventional file system for the storage of permanent
data. This alternative is far more flexible in that both the data and its
interrelationships can be stored in its original form. In order to achieve
this a uniform storage abstraction is required. Such an abstraction is
often called a persistent store. A persistent store supports mechanisms
for the storage and retrieval of objects and their interrelationships in a
uniform manner regardless of their lifetime. The MONADS DSM
supports such a store.

3.1 Persistence

Persistence is a measure of the length of time for which data exists and
is useable [9]. In traditional systems the persistence of short term data
such as local variables and heap items depends on the programming
language being used, whilst the persistence of long term data that
exists between executions and versions of a program depends on a file
system or database management system. Persistent programming
systems, on the other hand, provide in a uniform manner for all periods
of data longevity. This means that in a persistent programming system
the techniques for handling data are independent of the period for
which the data persists [8, 81]. In a persistent system, for instance,
dynamic structures such as lists and trees may continue to exist in
their original form despite the fact that the program that created them
has ceased execution. This is in contrast to traditional systems, which

-835-

maintain data in short term form for manipulation in virtual memory,
and change the data to long term form for storage in a separate
filestore.

With such traditional systems data must be transferred from the
filestore into virtual memory for use by programs, and transferred back
to the filestore if persistence beyond the life of the program is
required. Mechanisms such as pointers rely on the position of the data
in virtual memory, and traditional systems cannot guarantee that data
will reside in the same position every time it is transferred into virtual
memory from the filestore. For this reason data structures such as lists
and trees must be converted to a format suitable for storage in the
filestore prior to being transferred to it. The data structures must later
be reconstructed as they are transferred from the filestore into virtual
memory.

Three principles underpin the persistence abstraction [8, 9, 81]. These
principles are

(1) Persistence Independence. This means that the length of time
that data persists is totally independent of the way in which the
data is manipulated. Programmers cannot control the transfer of
data between long and short term store. Such transfers are
performed by the system itself.

(2) Data Type . This means that there are no types of data object for
which special cases apply, and all types of data object are
allowed the full range of persistence.

(3) Management Orthogonality. This means that the mechanism for
providing and identifying persistent data objects is orthogonal
to the type system, computational model, and control
structures.

Systems complying with all three principles are said to display
orthogonal persistence. Most attempts to produce such systems have
used traditional operating systems such as Unix [95] or Mach [4] as a
foundation for a persistent store called a persistent ohject manager [21,
35, 121]. These stores in turn support persistent programming
languages such as PS-algol [1, 11], Galileo [5], and Napier88 [83].

-36-

A small number of persistent systems comprise purpose built
architectures/operating systems [33, 102] with associated persistent
programming languages such as Leibniz [44, 68], and Pascal/M [98].
Recent work [99] suggests that the use of such purpose built
architectures as a basis for persistent systems may provide greater
flexibility and performance than is achieveable with systems based on
traditional operating systems.

Other persistent programming language designers have attempted to
achieve persistence without using an underlying persistent object
manager. Such attempts have failed to comply with one or more of the
three principles. Some have resulted in languages well suited for
manipulating relational databases [77, 105] but providing persistence
only for first order relations, in contravention of the Data Type
Orthogonality principle. Others [94, 106] associate persistence with
type, in contravention of the Management Orthogonality principle.
Using these languages it is possible to produce data structures for
which the transient copy in memory differs from the copy in the
persistent store because part of the structure is of the 'incorrect' order
or type. Subsequent transferring of such data structures from the
persistent store to local memory would result at best in loss of data,
and possibly in the existence of dangling references.

The design of persistent programming languages is beyond the scope of
this thesis and is therefore not discussed further. The construction of
persistent object managers is of interest because these managers
provide an alternative to the persistent store provided by the MONADS
DSM.

3.2 Persistent Object Managers

Persistent object managers provide persistent programming languages
(PPLs) with a persistent store in which to manipulate data objects.
According to [23, 31], properties required of such a store include

(1) Uniformity. A single mechanism is used for storage of all types
of data.

(2) Unbounded size. The physical properties of the storage media
are hidden, and the store provides the abstraction of having
infinite size.

(3) Stability. Failures are hidden, resulting in a store that appears to
be error free.

Two distinct approaches to the construction of such stores have
emerged

(1) the construction from scratch of dedicated architectures such
as the MONADS architecture [67], and

(2) the building of a layered architecture on top of an existing
hardware platform and operating system (for example [9, 21,
22, 23, 117]).

The MONADS distributed persistent store is described in detail in
chapter 4, distribution of the store in chapters 5 and 6, and stability of
the store in chapter 7. In the remainder of this chapter we discuss the
second approach to the creation of persistent stores, and the
implications of this approach on distribution of the store.

3.3 Persistence Using Existing Hardware and Operating Systems

The principle underlying the implementation of most persistent stores
is persistence by reachability. According to this principle, the fact that
an object A refers to another object B means that B will persist as long
as A does [50]. This implies that an object exists in the persistent store
if it is referred to by another object in the persistent store. A further
implication is that there is a persistent object whose existence is not
dependent on its being referenced by another persistent object. This
object is called the root of persistence for the store. The root of
persistence is maintained at a well known location in the store, and
points to a graph structure containing all the persistent objects in the
store. This means that all persistent objects are reachable from the root
of persistence.

Data objects in the store are created by programs. Such data may be

-38-

(1) transient data (for example local variables) which does not
persist beyond the life of the program, or

(2) persistent data.

Examples of stores to support persistence include CMS [9], POMS [29],
CPOMS [22], and Thatte's Persistent Memory [117]. The latest
generation of such stores, which supports the Napier88 language, has
been designed in both single user [23] and distributed [72] forms. This
store conceptually provides an infinitely large heap in which all
persistent objects reside. A consequence of this design is that all
objects, regardless of type, are stored in exactly the same way, freeing
the object manager from any need to know about the intended use of an
object. This means that the store exhibits the uniformity property.

In the Napier system programs are compiled into an intermediate code
called Persistent Abstract Machine (PAM) code [31]. Users or clients of
the system invoke the PAM interpreter to execute programs. Each such
invocation causes the creation of a local heap pointed to by a process
header object which represents the invocation. Since the process
header object is reachable from the root of persistence, the process
may be restarted after a system failure [72].

The local heap is used by the PAM for the storage of both transient
objectsl, and newly created objects that will eventually become
persistent. Its implementation and function differs between the single
user and distributed versions of the store. In each case the use of a local
heap is beneficial because it allows garbage collection to be performed
more efficiently by localising transient objects.

3.3.1 The Single User Napier Store

The single user Napier store [23] is constructed as a set of layers above
the Unix operating system [95]. The store is physically a single Unix file
containing the heap of persistent objects. When the PAM is asked to
execute a program, a process, with its local heap, is created as
described above. The only objects directly addressable by this process

1 These include temporary data structures and stack frames.

-30-

are those in the local heap. If the process wishes to access an object in
the persistent store, the PAM must firstly copy the object into the local
heap. This system requires the use of mechanisms to ensure that at
most one copy of a persistent object exists in the local heap at any time.

Persistent objects are named using Persistent IDentifiers (PIDs) which
uniquely identify them. Data within an object is identified by its offset
relative to the start of the object. Translation between PIDs and store
addresses is performed by a software address translator, with the
resultant negative effect on system performance. Such translation
benefits from hardware implementation, as demonstrated by Cockshott
[28] and others [14]. Every time a PID is used, the system must

(1) determine whether a copy of the object is already exists in the
local heap, and if so at what address, and

(2) if a copy of the object does not exist in the local heap, the
location of the object in the persistent store must be calculated.

When a process accesses a persistent object for the first time, the
whole object is copied into the local heap, and all subsequent accesses
use corresponding local heap addresses.This means that if the data
contained in the object is modified, the object must be copied back to
the persistent store before the changes become persistent.

The second property required of a persistent store is unbounded size.
Since no store can in fact have this property, an illusion of unbounded
size is provided. In order to maintain this illusion using a store of finite
physical size, redundant objects must be removed from the store, thus
freeing the physical space occupied by the objects. This process is
called garbage collection. Garbage collection is the act of removing
objects that are no longer needed by the user(s) of the store. Such
objects include

(1) transient objects such as stack frames and other temporary data
structures created by a program and no longer needed by it, and

(2) objects which had been placed in the persistent store, are no
longer needed by the owner, and are therefore no longer
referenced.

Since all objects are created in the local heap, and most of these are
transient, garbage collection is most commonly performed on the local
heap. Less frequent garbage collection of the persistent store removes
formerly persistent objects which are no longer required by the user
and have thus been removed from the persistence graph.

It is possible for the local heap to become full of copies of persistent
objects and transient objects which are still required, and so are not
yet garbage. In this situation the least recently used objects are copied
from the local heap to the persistent store. Some of these objects may
in fact be transient, in which case they will eventually become garbage,
and will be removed by a global garbage collect operation. This negates
the optimisation achieved through the garbage collection of local heaps,
so it is important that the local heap is sufficiently large to minimise
the possibility of overflow into the persistent store.

The third property required of a persistent store is stability. Since a
persistent system hides the physical attributes of data, details of the
storage of the data, including failure of the storage, must also be hidden
from the user. A store that provides the illusion of being failure free is
said to be stable. Failure of the store may result in

(1) the destruction of data caused by, for instance, the
disintegration of a disk platter or a head crash, or

(2) the corruption of data, due to an unexpected system shutdown
which causes the data to become inconsistent.

Physical failure of the storage media is best handled by a dumping or
backup strategy, and is not discussed further here.

To ensure that the store remains consistent, modifications to the store
are achieved as a series of atomic operations called checkpoints. This
means that a modification to the store is either successfully completed,
or it reverts to the previous checkpoint state if a system failure occurs.

Checkpointing of the single user Napier store is achieved at the page
level, and is achieved by making a copy of pages before they are
modified in the stable store. The set of such copies is called a before
look [21, 23]. The before look for the store is contained in a special

part of the store called the shadow area. When a process accesses an
-4] -

object for the first time, a copy of the object is made in the process
local heap. If the process attempts to modify the object, and the
persistent page containing the part of the object that is to be modified
has not been previously modified since the last checkpoint, space is
allocated for the page in the shadow areaZ2, and this is recorded in the
stable store red-tape. The before look is not made at this stage because
the persistent page has not actually been modified.

Before such a modified object can be copied back to the stable store3,
the shadow copy of the modified pages must be complete. This before
look copy and copying of the object from the local heap to the stable
store may occur when the heap is garbage collected, as described
above. Such garbage collection is necessary because of

(1) lack of space in the local heap, or
(2) as the initial stage of a checkpoint operation.

An update of the store to the next stable state is not permitted until the
entire before look is complete and all modified pages of persistent
objects have been copied to the stable store, meaning that if a system
failure occurs while the store is being modified, the previous stable
state of the store may be reconstructed from the page copies in the
shadow area. The size of the before look, and thus the shadow area,
depends on

(1) the number of pages modified since the last checkpoint, and

(2) whether the modifications were to newly created objects? or to
pre-existing objects.

2 Thus ensuring that there is sufficient disk space for the copy of the object.

3 The modified version of the object is copied back to the original position of the object in
the store, thus overwriting the previous version.

4 In which case there would be no copy of the object in the before look.

3.3.1.1 Evaluation

The single user Napier scheme successfully implements orthogonal
persistence. The costs involved in the implementation are considerable
however, and affect both the performance of the system and its
utilisation of the available storage media.

Performance is affected by the need for translation, in software, from
PIDs to local heap addresses. The copying of objects into the local heap
area, the achievement of stability by copying persistent pages into the
shadow area prior to modification, and the later copying of modified
objects back to the stable store, has an impact

(1) on performance in terms of processor time consumed by the
copy operation, and

(2) on disk space utilisation.

The effect of copying on disk space utilisation is particularly severe
because the scheme statically divides the available disk space into store
and shadow regions, and does not have the ability to adjust these
divisions according to the dynamics of system use, meaning that more
space than usually necessary must be allocated to the shadow region.

Lastly, the fact that there is no overall uniform memory mechanism
means that the system is difficult to understand, and thus extend. This
lack of uniformity is typified by the fact that the unit of transfer from
the persistent store to the local heap is a complete object, whilst the
unit of transfer from the local heap to the shadow area, and also back to
the persistent store, is the virtual page.

3.3.2 The Distributed Napier Store

The distributed Napier store [72, 121] is constructed above the Mach
[4] operating system. Mach provides the implementors with features
such as

(1) the ability to provide processes with alternate page fault
handlers called external pagers,

(2) distributed inter-process communication (IPC) which allows
location independent procedure calls, and

(3) Multiple threads of execution in a single process address space.

The distributed stable store comprises a single four gigabyte paged
address space called the persistent address space. Like the single user
store described above, this store implements a heap of persistent
objects, however these objects are addressed using their virtual
addresses rather than PIDs. This addressing technique means that
advantage can be taken of address translation hardware, with fault
conditions being handled by the external pager associated with each
client. A significant improvement over the single user Napier store has
been achieved by the separation of the functionality of the single user
system's local heap between a local page cache, and a local heap.
Persistent objects are paged into the local page cache as required, and
newly created objects only are stored in the local heap. Local heap
pages are allocated from the persistent address space, meaning that
addressing the local heap is consistent with addressing the persistent
store. The local heap pages are logically special, however, because
objects stored in them cannot be shared with other clients. Before an
object created by a client can be accessed by other clients, it must be
copied from the local heap into persistent pages, thus becoming a
(potentially) persistent object.

Coherency of the store is achieved at the page level using a multiple
reader/single writer protocol similar to that described in section 5.3.
Distribution is achieved using a combination of the the Central-server
and Read-Replication models described in section 2.2.3. The server
function is performed by the Stable Store Server, which is centralised
and consists of

(1) The Server Request Handler, which receives requests from
clients in the form of IPC messages and services these requests
by passing them to the appropriate components of the server. In
handling these requests the Server Request Handler also
implements the coherency protocol through its internal
Coherency Manager.

(2) The Stable Store Manager, which reads pages from, and writes
pages to the stable medium (the physical store).

(3) The Stable Heap Manager, which provides the abstraction of a
store consisting of a heap of persistent objects. This manager is
called, for instance, when a new persistent object is created.

Each client executes against a subset of the stable store pages which
are contained in a local page cache. This cache is maintained by the
client's external pager, which communicates with the Stable Store
Server using the Client Request Handler. Part of the local page cache
contains the client's local heap, which consists of a contiguous set of
previously unused pages from the persistent address space, and in
which the client places newly created objects. The local heap is locked
into main memory, meaning that pages from it may not be discarded by
the system. Since the local heap contains local objects, its pages are not
shared with other clients. The strategy which allows the sharing of a
persistent page which contains pointer(s) into a local heap is discussed
below.

The local page cache effectively provides each client with a window
onto a four gigabyte persistent store. Not all of this store is available for
use by clients, however, because

(1) Part of the client address space is occupied by the PAM
interpreter and the data structures required by the coherence
protocol.

(2) Only half of the apparently available store is available at any time.
This is because of the generation-based garbage collection
technique [72, 120] used to garbage collect the store and to
provide remote access to persistent pages containing pointers
into local heaps. The technique potentially requires one or more
copy out pages for every locally modified persistent pageS.

Coherency of the persistent store is controlled by the Coherency
Manager section of the Server Request Handler. The coherency

5 The designers plan to upgrade the garbage collection algorithm to collect from one 4

gigabyte address space to another, thus doubling the size of the persistent store.

-45-

protocol moves pages between states according to a finite state
automaton. The server request handler maintains the Export Table,
hashed on page number, to enable coherency control. This table
contains an entry for each persistent page currently in a client page
cache. Each entry indicates the current state of the page, and two lists.
These lists are

(1) The V-list, which contains an entry for every client currently
holding a copy of the page. A page is always exported with read-
only access, and may be provided by any member of the V-list
under instruction from the Server Request Handler. When a
client requests write access to a page, the other members of the
V-list for the page are instructed by the Coherency Manager to
invalidate their copies.

(2) The D-list, which contains an entry for every client who has
seen the page since it was last stabilised. This list is used to
enable the maintenance of associations.

An association is a set of clients who have become dependent on each
other because they have seen the same modified data. Each association
has an accompanying list of persistent pages which contain the
commonly accessed modified data. Associations change whenever a
client obtains a copy of a page that has been modified relative to the
stable copy of the page. When a client obtains a copy of a modified page

(1) the association to which the client belongs is merged with the
association of other clients dependent on the page, and

(2) if necessary, the page is added to the list of pages modified by
members of the association since the last stabilise.

When any member of an association requests a stabilise operation,

(1) all members of the association must garbage collect their local
heap, and

(2) all pages modified by members of the association must be
copied to the stable store as an atomic operation, thus ensuring
that the store remains consistent.

-46 -

A modified persistent page held in a client's page cache may contain a
pointer into the client's local heap®. When another client requests a
copy of such a page, or when the client performs a stabilise operation,
the local heap object must be moved from the local heap pages into
persistent store pages. Because the local heap page(s) containing the
object may also contain non-persistent objects, it is not satisfactory to
simply make such page(s) persistent?. The solution adopted is to

(1) Record all persistent pages in the local cache which contain
pointers into the local heap in a remembered set.

(2) Maintain a set of persistent pages called copy-out pages with
each client. The maintenance of a sufficiently large pool of copy-
out pages is controlled by the coherency algorithm, which
ensures that the server is requested to allocate more of them
whenever the pool size falls below a minimum level.

Whenever a page in the remembered set is copied from the local page
cache, the local heap objects pointed to from the page are copied into
one or more copy-out pages, and the pointers changed to reflect the
new location of the objects. Other pages in the remembered set are also
scanned and pointers are changed as necessary. Pointers from the local
heap to the moved object(s) are modified using a different technique.

By read and write protecting the original local heap page, the local PAM
can detect any subsequent attempt to access the old copy of an object
moved to a copy-out page, and correct the pointer used so that it points
to the copy out version. The next garbage collection operation, which
necessarily traverses the local heap, detects and corrects any
remaining pointers to the old copy of the object. This means that after
garbage collection the protection on the local heap page may be
removed. Use of this technique for modifying local heap pointers avoids

6 A pointer from a persistent object to a local heap object renders the local heap object
persistent.

7 Doing so potentially increases the number of transient objects in the persistent store,
necessitating more frequent (and costly) garbage collection of the store. The main reason
for the maintenance of local heaps is to avoid frequent garbage collection of the

persistent store.

_47 -

the expense of traversing the entire heap whenever a page in the
remembered set is exported.

The copy-out pages are also used when the local heap becomes full, and
garbage collection is unsuccessful in creating sufficient space for
continued operation. The least recently used objects are copied from
the local heap into copy-out pages. During this operation some
transient objects may be effectively moved into the persistent store,
meaning that when they cease to be of use and become garbage, they
will not be found during garbage collection of the local heap. The major
benefit of the use of local heaps is the ability to localise garbage
collection, so it is important that the space allocated to local heaps is
sufficiently large to minimise spill-over into the persistent store.

Stability is achieved using an after look strategy, meaning that a copy of
modifications to an object is made after the modification. In accordance
with this strategy, modified persistent pages which are removed from a
local page cache as part of page discard or a stabilise operation are
written to previously unused shadow pages on disk in accordance with
the technique proposed by Lorie [76]. This means that, temporarily,
both the stable and modified versions of the page are stored on disk.
The final stage of a stabilise operation updates the disk page mapping
information using Challis' algorithm [25], thus creating a new stable
state for the store. Prior to this final stage the disk mapping
information points to the preserved previous stable state, thus
permitting reversion to that state in the case of a client or system
failure.

3.3.2.1 Evaluation

Like the single user version, the distributed Napier system effectively
implements orthogonal persistence. The scheme represents a
significant improvement on the single user design in terms of the
improved utility of multi-user and distributed access to the store. Other
features of the distributed design which improve on deficiencies of the
single user version include

(1) the use of virtual addresses rather than PIDs for naming objects,
resulting in the ability to exploit address translation hardware,
thus improving address translation performance,

(2) the achievement of coherency at the virtual page level and the
use of an after look approach to stability, thus eliminating the
pre-modification copying of objects, and

(3) the provision of the abstraction of a heap of persistent objects to
the user whilst maintaining a consistent paged view of memory.

The use of the central server rather than distributed server model for
page distribution increases the possibility of network bottlenecks in the
form of page requests, transmissions, and returns, at the server. Whilst
it is sensible to couple the page server and coherency management
functions, the location of the coherency manager with its associated
write request, invalidate, invalidate acknowledge, and change access
messages within the stable store server further the bottleneck
problem. In addition, the centralised design results in a system which
is totally reliant on the availability of the server. If the server fails, all of
the persistent store becomes inaccessible to clients. In a distributed
server system, on the other hand, the failure of a server renders only
part of the store inaccessible. The design of a distributed server Napier
system involves significant extensions to the failure and garbage
collection strategies, and is the subject of future research.

Finally, the implementors have reported several problems related to
the construction of their store above an existing architecture and
operating system [121]. These include lack of operating system support
for marking of locally cached pages as unmodified but "precious" (i.e.
not to be discarded), deficiencies in exception handling, and a general
lack of control over page discard. The solutions to these problems
introduce inefficiencies, for example the necessity to non-destructively
write to every page brought into the local page cache. These
inefficiencies would not occur if a purpose-built architecture was being
used.

3.4 Conclusion

Persistent systems may be created by either building above existing
hardware and operating systems, or by manufacturing purpose build
architectures. Whilst purpose built persistent systems are rare, a
number of examples of software implemented persistent systems have
been developed. Single user and distributed versions of the Napier88
persistent system exist, and successfully exhibit orthogonal
persistence.

These systems, however, are restricted to some extent by the
architectures above which they are constructed. The size of the
persistent store that they provide is limited to the address width of the
host hardware. In the case of the single user system, performance is
detrimentally affected by the lack of hardware support for PID to local
heap address translation. Development of the distributed Napier system
has been complicated by deficiencies in some operating system
mechanisms.

The centralised server architecture of the distributed Napier system
means that failure of the server prevents all clients from accessing the
persistent store. In addition to this, the server forms a potential source
of bottlenecks in a system with numerous clients. Finally no mechanism
for control of access to data is provided by the store itself. Rather the
system relies on the integrity of compilers, trusting that they will never
generate illegal addresses.

Chapter 4 VIRTUAL MEMORY AND THE MONADS ARCHITECTURE

4.0 Introduction

The MONADS store provides a paged virtual memory which can be
efficiently accessed by very large addresses. Protection of the data in
the store, which is persistent, is provided by capabilities. The MONADS
Distributed Shared Memory (DSM) described in this thesis distributes
this large virtual address space across a number of networked nodes.
Blocks of the virtual memory are transmitted between nodes as part of
the virtual memory management algorithm. In this chapter we first
discuss the conventional approach to virtual memory management. We
then describe the MONADS virtual memory and the role of capabilities
in the control of access to data stored in it.

4.1 Virtual Memory

Computer memory may be classified as primary or main, and secondary.
Primary memory is directly addressable by the processor, and typically
comprises random access memory (RAM) and read only memory
(ROM). Secondary memory is not directly addressable by the processor,
and typically comprises disks and tapes.

Before the introduction of virtual memory, the code and data addressed
by a running process was restricted to a size small enough to totally fit
into primary memory. The primary memory itself could be partitioned
to allow a number of concurrently running processes, with their data,
to exist in memory simultaneously. Such an arrangement meant that
main memory size placed restrictions on both the number of processes
that could run concurrently on the computer, and on the size of
processes and directly addressable data. Techniques such as swapping
[16], overlays [49], and virtual memory [70] were developed to
overcome these restrictions. The first two of these techniques are quite
primitive and restrictive, and often result in an inefficient system.
Virtual memory, on the other hand, provides uniform handling of
program code and data, and its use is transparent to the programmer,
meaning that programs do not need special code to take advantage of

-5l -

the the "extra" memory. It has established itself as a powerful and
flexible memory management mechanism.

Virtual memory provides the abstraction of a larger directly addressable
memory than is actually present in the form of main memory. It
decouples the logical addresses used by programs from main memory
addresses, and includes part of the secondary memory in the
addressable memory space. In practice the processor is only able to
directly access main memory, so virtual memory management involves
hardware and software techniques that automatically transfer code and
data between main and secondary memory.

Most modern machines use virtual memory based on fixed size blocks
called pages. These implementations usually encompass the machine's
main memory and a dedicated portion of the space on attached disk(s).
The virtual memory disk area is called the paging area. (confusingly
called swap in Unix parlance).

Virtual memory was further extended in MULTICS [86] and the IBM
System/38 [15] to allow all files to exist in the virtual memory, thus
completely eliminating the need for a separate filestore and creating a
flat store. This required that every byte of every file have a unique
virtual address. The virtual memory width of 36 bits used by MULTICS,
for instance, proved to be inadequate as the amount of file data grew.
The implementation of wider virtual memories using conventional
techniques was impractical because of the size of the data structures
needed for their management [113].

The use of virtual memory for program code and data has been
extended in a similar, although somewhat more limited fashion, in
some operating systems to allow for memory mapped files [73], thus
allowing files to be linked to and addressed via a process address space.
This technique temporarily associates a range of virtual addresses with
the data in a file, meaning that such file data can be addressed directly
without the need for explicit file handling instructions in program
code.

The MONADS system implements new virtual memory management
techniques [2] that are used to manage a 60 bit wide virtual memory on

the experimental MONADS-PC [100], and will be used to manage a 128
bit wide virtual memory on the proposed MONADS-MM [103]. The
MONADS system allows all data, whether on disk or in main memory,
to co-exist in virtual memory, and to be directly accessed using large
virtual addresses, providing a flat store of practical size.

In the next section we describe how a conventional virtual memory
operates and is managed. This is essential to the understanding of the
MONADS memory management scheme.

4.2 Conventional Virtual Memory Management

Paged virtual memory was first introduced on the Atlas computer [70],
and is the most common form of virtual memory management. The
virtual memory space is partitioned into fixed size blocks called pages,
and the main memory is partitioned into the same size blocks called
page frames. A mapping is maintained between virtual memory pages
and their location in main and secondary memory. Whenever the
processor reads from or writes to a virtual address, the address must
be mapped onto a location in main memory so that the access can
occur. If such a mapping is not possible, then the virtual memory page
containing the address does not exist in the main memory. This
condition is called a page fault.

When a page fault occurs, the operating system performs the following
tasks.

(1) The process that generated the faulting address is suspended
until the fault is resolved.

(2) The required virtual memory page is moved from the secondary
store into the main store. This is called page retrieval.

(3) When the page has been brought into the main memory, the
mapping data is updated.

(4) Since access to addresses in the page can now occur, the
suspended process is reactivated and the failing instruction
repeated.

Eventually the main memory will fill up with retrieved pages. To
provide room for further pages, it is necessary to remove others from
main memory. This is called page discard or page replacement.
Algorithms for page discard are well understood, and some common
algorithms are described in [107]. The processes of page retrieval and
page discard are collectively called paging.

Multiprogrammed computers support multiple processes running
concurrently. These processes are allocated slices of processor time by
software called the process scheduler. Each process in a typical
multiprogrammed computer runs in its own virtual memory space,
which contains the process stack, code, and temporary data structures.
The virtual addresses used by each process are the same, but the data
seen at any particular virtual address may be different for each process.
Such architectures require separate mapping data for each process.
Switching between mapping data occurs every time the process
scheduler suspends a process and activates another. In this way a
particular virtual address will map to a different place in main memory
(or may not exist in main memory) for different processes.

The first machine to implement a paged virtual memory was the Atlas
[70]. The Atlas maintained mapping data in an associative memory.
Associative memory provides a key field for each data record stored in
it. A key may be presented to the associative memory and it is
(logically) compared in parallel with all keys in the store, so that the
data corresponding to a key value can be found very quickly. Atlas used
an associative store entry for each page frame of main memory, keyed
on virtual page number. A page fault occurred if no entry existed for the
required virtual page. This process is demonstrated in figure 4.1.

The complexity of the hardware required to allow parallel checking of
key fields means that large associative stores are prohibitively
expensive to implement. The Atlas physical memory was quite small,
and only one set of mapping data was required because the computer
was not designed for multiprogramming, so mapping based on an
associative store was appropriate. As main memory sizes grew,
however, it became impractical to build large enough associative stores,
and a different technique based on page tables was adopted.

Virtual Address

{ Virtual Page Number| Offset Within Page|

Associative Store

Virtual Page Number

(Key Field) Main Memory Page Frame

Matching Virtual Page | Occupied Main Memory Page

’-r—'d‘uf-‘-‘-‘l-'------q

1
)

v
| Page Frame Number | Offset Within Page |

Physical Address

Figure 4.1. Use of Associative Memory in Address Translation.

A page table is a linear list, indexed by virtual page number. Each entry
describes the current status and location of the corresponding virtual
page. The length of a page table is thus proportional to the number of
virtual pages. To support multiprogramming and to provide protection
between processes it is usual to have a page table per process with a
page table switch occurring as part of a process switch. This is
implemented by having a page table register pointing at the current
page tablel.

A typical page table is shown in figure 4.2. The location field of each
page table record contains the main memory page frame number if the
virtual page is in main memory, and the disk address of the virtual page
if it is not currently in main memory. The present bit indicates

1 There is usually also a page table length register so that page tables need not be the
maximum length.

whether the page currently exists in main memory. The status field
contains access information such as read, write, or execute access
rights, and information used by the page discard algorithm such as how
recently the page has been used and whether it has been modified.
When a process generates a virtual memory address, the virtual page
number within the address is used as an index into the page table. If
the present bit of the corresponding entry indicates that the page is in
main memory, the offset of the address within the virtual page is
appended to the main memory page frame number obtained from the
page table. The resultant main memory address is then accessed
(subject to the access rights indicated in the status field). If the virtual
page is not in main memory, a page fault occurs. In this case the disk
address information is used to retrieve the page from disk, and after
the page table data has been updated the faulting instruction is
repeated.

Page Table
Virtual
Page
Number
Present Status Location

Figure 4.2. The Structure of a Typical Page Table Entry.

Disk addresses of pages currently in main memory are typically kept in
a separate table called the frame table which is indexed on main
memory page number. When page discard of a modified main memory
page frame occurs, the frame table is used to determine where the
frame contents are stored on disk. Unmodified page frames may, of
course, be discarded without the need for an update of the
corresponding disk page.

In principle it is necessary to consult the page table on each memory
access to map between the virtual memory address generated by the
running process and the corresponding main memory address. The

-55-

extra memory access involved would be detrimental to system
performance, and to decrease this overhead, a high speed translation
lookaside buffer is commonly used. This buffer contains the most
recently accessed address translation entries, and relies on the
principle of locality of reference, which states that a process references
only a small fraction of its pages during any phase of execution. The set
of pages necessary in main memory to enable efficient execution is
called the working set for the process [37, 38]. Translation lookaside
buffers are usually implemented as set associative caches [108].

For small virtual memories the page table, which contains an entry for
every virtual memory page, is typically small enough to be kept in main
memory. Large virtual memories require large page tables. For example,
the VAX-11 [73], which has a virtual memory size of up to 232 bytes?2
and a page size of 29 bytes, requires a page table with 223 entries for a
maximum size address space, each of 22 bytes. The maximum size page
table is thus 225 bytes or 32 megabytes long. Considering that such a
page table is potentially needed for every process, it is not feasible to
hold the page tables in main memory.

The solution is to place page tables in virtual memory. A result of this is
that parts of the page table itself can be paged out, meaning that page
faults can occur reading the page table. In order to ensure that such
page faults can be resolved, it is necessary to lock some information
about the page table into main memory. This can be achieved by
recursively building page tables of the pages used to hold the next
lower level page table until the result is small enough to lock into main
memory. The VAX-11, for example, requires at most 216 pages for its
page table, as described above. In that case the second level page table
would be 218 bytes or 256 kilobytes in size, which is small enough to be
locked down into main memory. Computers with larger virtual
memories may need to increase the page size and/or use more levels of
page table to achieve locked-down page tables of similar size.

The use of a multi-level page table means that a virtual memory access
can involve an extra memory access, with an associated risk of a page

2 In fact the VAX-11 has three virtual address spaces of up to 230 bytes. We have
simplified the description for the sake of clarity.

-57-

fault, for each extra level of page table. On the VAX-11, for instance,
every virtual memory access must be eventually mapped onto a main
memory address. If the page table entry corresponding to an address is
not entered in the translation lookaside buffer, then the page table
must be consulted. If the entry corresponding to the relevant page table
page is not entered in the translation lookaside buffer, then the
secondary page table must be used to find the main memory location of
the page table page. If the secondary page table page is not in main
memory, a page fault occurs, and the page must be brought in off disk.
Paging in part of the page table may in turn necessitate the paging out
of some other page. This involves updating the page table to reflect the
removed page's new status, and this update may itself result in a page
fault, and so on.

The above examination of an example of conventional virtual memory
management demonstrates the complications introduced by the multi-
level page tables required by large virtual memories. The fundamental
problem is that the length of the page tables is proportional to the size
of the virtual memory. We now examine an alternate approach in which
the length of the table mapping virtual addresses to main memory
addresses is proportional to the size of main memory.

4.3 Management of Large Virtual Memories

Two mappings are required in order to implement virtual memory. The
first is a mapping from virtual addresses to main memory addresses for
pages currently in main memory, and the second is a mapping from
virtual addresses to disk addresses for pages not in main memory. The
conventional approach to virtual memory uses the same data structures
and mechanisms, based on page tables, for both of these mappings.
Abramson [2] and others [4, 24] have proposed that different
mechanisms and structures be applied to the relatively static disk
address information, which is only needed in page fault resolution, and
to the volatile main memory address information which is needed for
every memory reference. The way to achieve this is to decouple the
virtual address to main memory address mapping from the virtual
address to disk address mapping. The Mach operating system [4], for

example, implements such decoupled mappings for the purpose of
achieving portability between architectures.

Abramson's scheme, which was implemented in the MONADS-PC [100],
uses special purpose hardware for translating the virtual addresses
generated by programs. Unlike conventional lookaside buffers, which
can only hold a subset of the address translation entries, the special
purpose translator maintains virtual page to main memory mappings for
all main memory page frames in high speed memory [2]. Thus page
tables are not needed for the translation of virtual addresses to main
memory addresses, and a translation miss only occurs if the required
page is not in main memory.

When a page is discarded, the address translation entry for the
appropriate main memory page frame is simply marked as invalid. This
scheme avoids the problem of nested page faults experienced by
conventional schemes because it is not necessary to modify a page table
on page discard.

When a page fault occurs, a separate mechanism is invoked to find the
disk location of the required virtual page. In keeping with the relatively
slow access speeds of disks and the infrequency of page faults relative
to memory accesses, this mechanism need not be so finely tuned for
maximum performance, and can, for instance, be implemented without
the use of expensive high speed memory. The scheme used in the
MONADS system is based on disk page tables which are similar to the
page tables described in the previous section, but which are only used
for the virtual address to disk address mappings. This is described in
section 4.3.2.

To improve the efficiency of page discard, the page fault manager
maintains an additional data structure called the Main Memory Table
(MMT). This table, which is locked into main memory, contains an
entry for every main memory page frame. Each entry indicates either
the disk address of the virtual memory page currently occupying the
frame, or that the frame is unoccupied. The format of the table is
shown in figure 4.3. When a modified page is removed from main
memory, it is written to the disk page indicated in the MMT. This
avoids reading the disk page table, which could result in a further page

-BO-

fault. The MMT is also used to maintain a free list of main memory page
frames. The lock count field is used to lock pages into main memory,
thus preventing their discard.

Lock ;
AS# Page# Count Disk Address

One entry per page
frame of physical
memory

PERTEY

Figure 4.3. The Structure of the Main Memory Table.

4.3.1 Address Translation Hardware

Abramson's address translation hardware implements a hash table with
embedded overflow for storing virtual address to main memory address
mappings. Similar schemes have been adopted on the IBM System/38
which used a single hash table in main memory assisted by a translation
lookaside buffer [15], and the MU6-G which used multiple hash tables
queried in parallel [43]. To improve performance, Abramson's scheme
maintains the hash table entirely in dedicated high speed memory.

Each cell of the hash table has the structure shown in figure 4.4. The
key field identifies the virtual page represented by the cell, whilst the
main memory page frame number indicates where in main memory the
virtual page is located. Each cell also has a foreign bit, an end of chain
bit, modified bit, access rights bits, and a link field. The purposes of
these is explained in the following paragraphs.

When presented with a virtual address, the hardware hashes the virtual
page number to the address of a cell in the table, and compares the
virtual page number with the key. If they match, the page frame is
retrieved and the access can proceed.

-60-

L.Ink Read Foreign End of Modified Access | Main Memory
Field | Only

Key Field Chain Rights | Page Number

Figure 4.4. The Structure of a Typical Hash Table Cell.

It is possible for more than one virtual page number to hash to the
same cell. This situation is called a clash. When a clash occurs,
unoccupied cells are used to form a chain of entries with the same hash
value. The link field in each cell in the chain points to the next cell in
the chain. The last cell in a chain is indicated by the end of chain bit.
Each cell in a chain, except for the cell at the head, has its foreign bit
set to indicate that its virtual page number does not hash to the
occupied cell.

The address translation process may be summarised as follows. The
presented virtual address page number is hashed, and if the resultant
cell contains a valid entry, the key field value is compared with the
address. If these do not match, the chain is followed until either a
match is found, in which case the translation is complete, or end of
chain is reached, in which case the virtual page is not in main memory.
If the virtual page is not in main memory a page fault is generated.

The read-only bit prevents writing to a page so marked. If an attempt is
made to reference a page in contravention of the read-only bit, a write
fault interrupt is generated and the reference is aborted. If an address
in a page is successfully written to, the corresponding modified bit is
set by the hardware.

This scheme leads to the possibility that a virtual page number V) may
hash to a cell C containing an entry, for some virtual page Vo, which is
part of a chain but not the head of the chain. This is indicated by the
foreign bit, which, when set, indicates that the cell contains an entry
for a page whose address hashes to the cell at the head of the chain,
and so no entry could possibly exist in the chain for page Vi. When this

-6l -

situation occurs, a page fault is generated for page V1, and the entry for
page Vg is moved to an unoccupied cell to free the original cell C for an
entry for page V;. Since the entry for Vg is part of a chain, the link
pointing to the moved entry must be changed. The last cell in each
chain has its link field pointing to the head to facilitate this operation.
When page V) is brought into memory it is mapped using cell C. The
address translation process is shown pictorially in figure 4.5.

$ Virtual Page Number Offset
Hash
Generator
Key Field Link Read Other Main Memory
(Virtual Page Number)| Field Only | Flags Page Number

Real
_’ Comparator Page Number Offset

Figure 4.5. The Address Translation Process.

As described above, clashes on a cell require following of a chain on
every access. This represents an overhead which must be minimised in
order to achieve acceptable performance. Such performance can be
achieved if the hash table is sparsely occupied, meaning that the
probability of clashes and the lengths of chains are kept small. It has
been shown [80] that if the hashing function provides an even
distribution of hash keys, the expected number of probes to retrieve an
item from a hash table is given by

E = T 4 Ldg §# 2J

where o is the loading factor, the ratio of occupied cells to the total
table size. Abramson's implementation in the MONADS-PC uses a hash

-62-

table that has four times as many cells as there are pages of main
memory. Thus the loading factor is 0.25, and the expected number of
probes per address translation is 1.125. Notice that the number of cells
in the hash table increases linearly with the size of main memory. Since
the number of virtual pages is doubled by widening addresses one bit,
the hash table width increases logarithmically with the size of virtual
memory. This is in contrast to the page table approach, in which page
tables increase linearly with the size of virtual memory.

We have shown that the described address translation scheme is
efficient provided the hash table is of sufficient size, and that it is
scaleable to large virtual memories. The experimental MONADS-PC
system, for instance, supports 60 bit virtual addresses, and the new
MONADS-MM system [103] supports 128 bit addresses. In the
MONADS system all processes operate within the one large virtual
address space. A single address translation table is thus sufficient for all
processes running on a MONADS computer. This is in contrast with
conventional virtual memory implementations that reuse virtual
addresses for each process (excluding lightweight processes), and thus
maintain a separate page table per process.

The MONADS-PC address translation unit (ATU) is implemented using
the techniques described above. It provides mapping between virtual
and main memory addresses, and generates a page fault interrupt if the
page containing the required address is not in main memory. The
following section describes how MONADS secondary storage is
structured, and how page faults are resolved.

4.3.2 Secondary Storage Management

In the MONADS-PC system the virtual memory encompasses all disk
and main memory. Thus in MONADS, virtual addresses can refer to any
byte on any disk connected to the computer. In order to resolve a page
fault, the disk location of the page must be determined. The first step
is determining which of the attached disks contains the page.

Modern disk drives can have very large capacities. It is often
convenient to split up the capacity of such a drive into smaller units
called partitions which are logically equivalent to separate disks. A

-B3-

partition, of course, can encompass an entire drive if required. The
logical disks formed by partitioning a drive attached to a MONADS
computer are known as volumes3. When a volume is created, it is
allocated a unique volume number.

The volume number can be used to define the range of virtual addresses
that is stored on the volume. To achieve this we use the volume number
as the high order bits of all such addresses. MONADS virtual addresses
are wide enough to allow a volume number field that does not limit the
number (ie there are enough volume number bits) or size (ie there are
enough lower order bits) of disks. This avoids complex mappings to
maintain the association between virtual addresses and volume
numbers4. The MONADS kernel maintains a Local Mount Table of
currently mounted volumes. Each entry in this table consists of a
volume number field and a disk drive number field.

Each volume, then, has its own range of virtual addresses. This range is
further divided into areas corresponding to the logical entities such as
processes, files and programs that exist on the disk. These areas are
called address spaces, and are identified by address space numbers.
Address spaces are further divided into fixed size pages, identified by
page numbers. A MONADS virtual address, then, consists of four parts,
as shown in figure 4.6. On the prototype MONADS-PC system,
addresses are 60 bits wide, with 6 bit volume numbers, 28 bit within
volume address space numbers, 16 bit within address space page
numbers and 12 bit offsets. The MONADS-MM system [103], with 128
bit addresses, allows for 32 bit volume and address space numbers.

Volume Number | Within Volume Address Space Number |Within AS Page| Offset
(8 bits) (26 bits) (16 bits) (12 bits)

Figure 4.6. The Structure of a MONADS-PC Virtual Address.

Each address space has its own page table which maps from virtual
addresses to disk addresses for that address space. This page table is

3 MONADS-PC volumes are of maximum size 256 megabytes.
4 The moving of objects between volumes will be discussed in chapter 6.

-64-

stored within the address space which it describes. Because the
address translation hardware does not need to access this table, its
format need not be permanently fixed, and there may be several
different formats. The format for any particular address space must, of
course, be known by the virtual memory software to enable it to control
paging. For example, in the case of a large database, the pages may be
stored in contiguous disk blocks. In such a case the page table need
only consist of a starting disk address along with the number of pages,
since the disk address of any page may be computed using the start
address and the page number. This flexibility is not possible with
conventional systems.

Address spaces for which disk block allocation is completely dynamic
require a separate entry for each page. The size of such a page table
depends on the number of pages in the address space and on the page
size. The largest MONADS-PC address space is 228 bytes (256
megabytes) and the page size is 212 bytes (4 kilobytes). The page table
for the largest possible address space requires 216 entries (one for each
page), and this is placed in virtual memory. Entries in the page table
contain disk location information only, because status data is only
required for active pages and can be maintained in the ATU. This
means that each entry need only consist of a 16 bit relative disk block
number since the maximum size of a volume is 256 megabytes. For the
largest possible address space, with a 16 bit (2 byte) entry for each of
216 pages, the page table is 217 bytes or 128 kilobytes.

The address space page table, which we call the primary page table,
therefore potentially occupies 32 pages of the address space. Since it is
of unknown size, the primary page table is located at the high-order
address end of the address space, growing downwards towards the
data.

To enable the pages of the primary page table to be found on disk, a
secondary page table is required. It is stored in the first page of the
address space. The system maintains a table of the address spaces
stored on a volume, together with the disk location of the first page of
each address space, in a well-known location on the volume. These
volume directories are described later in this section. The secondary

page table, like the primary page table it describes, exists in virtual
memory and consists of 32 entries of 16 bits each, a total of 64 bytes.

It is recognised that many address spaces contain only a small amount
of data. To reduce the number of disk accesses needed to read such
small address spaces, we store the first 256 entries of the primary page
table in the first page of the address space. This means that it is not
necessary to read two pages (page zero for the secondary page table,
and the top page for the primary page table) to access the first 256
pages of an address space. Thus, for address spaces of up to 256 pages
(or one megabyte), the complete primary page table is stored in the
first page.

The first page of an address space thus contains the 32 entries of the
secondary page table and 256 entries of the primary page table, a total
of 576 bytes. This leaves space for approximately 3.5 kilobytes of data in
the first page of an address space, meaning that for address spaces
smaller that 3.5 kilobytes, a page fault is resolved in the course of
accessing the address space paging information. The structure of an
address space is illustrated in figure 4.7.

The consistent structure of the address spaces described above allows
the page fault handler to calculate the location of any primary page table
entry. When a page fault occurs, the page fault handler attempts to read
the page table entry for the page. The virtual address of this page table
entry may be calculated since the virtual address of the start of the page
table is known. This may in turn cause another page fault if the
required page of the primary page table is not in memory. If this
second page fault does occur, the secondary page table entry for the
primary page table page must be read to determine the disk location of
the primary page table page. Again this address is easily generated
since the virtual address of the secondary page table within page zero of
the address space is known. This read could cause a third page fault on
page zero of the address space. To resolve this page fault, the volume
directory must be accessed. This volume directory is stored in address
space zero of every volume.

Low
addresses

System dependent red-tape information

Secondary Page Table
(Page Table for Page Tables)

32 entries each 16 bits long. Each entry contains the
disk address of the corresponding page of the
primary page table. This table is indexed by relative
page number of the primary page table.

Head of Primary Page Table
(Page Table for first one megabyte)

256 entries each 16 bits long. Each entry contains
the disk address of the corresponding page in the
address space. This table is indexed by page number
of address space. It is the page table for the first
one megabyte of address space.

Available address space

F A A G i g B g
L g O " G g g

Primary Page Table

65536 entries each 16 bits long. Each entry contains
the disk address of the corresponding page in the
address space. This table is indexed by page number
of the address space.

High
addresses

Figure 4.7. The Structure of an Address Space.

Address space zero of a volume is used to store volume specific
information such as a free space map and a directory of the address
spaces stored on the volume. Whenever a new address space is created
on a volume, it is assigned the next available relative address space
number for the volume, which guarantees that every address space
number will be unique. The directory is organised as a hash table keyed
on these relative address space numbers. This implementation is used
because address space numbers are sparsely distributed and large. The
organisation of address space zero is illustrated in figure 4.8.

F v
o,

Low
addresses

Next available address space number

Free space management information
(organised as a bit map)

Length of hash table

Hash Table

This is used to locate the
disk address of page zero of
an address space

High
addresses

LA O o
g g

Figure 4.8. The Organisation of Address Space Zero.

The structure of address space zero is identical to all other address
spaces in that it contains primary and secondary page tables as
previously described. It is necessary, however, to predefine the disk
location of the first page of address space zero to enable the secondary
page table for the address space to be read. The kernel reads this first
page of address space zero for a volume, and locks it into memory,
when the volume is mounted.

4.3.3 Evaluation

The separation of virtual to main memory mappings from virtual to disk
location mappings results in greater flexibility than provided by
conventional virtual memory management systems. Most significant of
these is the ability to manage extremely large virtual memories with
only a logarithmic increase in the size of the virtual to main memory

address mapping data. Coupled to this is the ability to manage large
main memories with only a linear increase in this mapping data5.

A side benefit of the conventional technique of maintaining a separate
virtual memory space for every process or group of cooperating
processes is that processes in different virtual memory spaces cannot
illegally or accidentally access each other's data. Since MONADS
processes all exist in the same virtual memory space, a different
method must be used to protect data. This is described in the next
section.

4.4 Higher Level Memory Management

The use of very large virtual memory negates the need for re-use of
virtual memory addresses, as required by conventional systems,
meaning that all processes and data can co-exist in a single virtual
memory space. The use of separate virtual memory spaces for each
process or group of co-operating processes in conventional systems has
the advantage that data in such a memory space is automatically
protected from illegal access by external processes. This means of
protection is not available within a single large virtual memory space.
On the other hand, it is not necessary to use contorted schemes for the
sharing of data between processes. An example of such a scheme is the
mapping of data out of one virtual space and the subsequent mapping
into another used by Amoeba [84].

The approach to security taken in some experimental systems such as
Napier88 [82] is to restrict code generation to trusted programs such
as compilers, thus ensuring that programs cannot generate illegal
addresses. This has some merit in that it shifts most of the protection
overheads to compile time. However there are major disadvantages in
terms of flexibility, particularly in a mixed language environment.

An alternative scheme, adopted in MONADS, is to use a higher level
architecture based on division of the virtual memory space into logical
units called segments. Access to these segments, and the structures

5 The Main Memory Table, which is used to store the disk locations of virtual pages

currently in main memory, also increases linearly with the size of main memory,

-60-

built with them, is controlled using protection based on capabilities
[39, 47, 64, 100]. Support for capabilities is provided at the
architectural level.

4.4.1 Segmented Virtual Memory

Programmers and compilers see the MONADS virtual memory as a
collection of segments which may be of arbitrary size®. Segment
boundaries are orthogonal to page boundaries [61, 63] thus avoiding the
internal fragmentation problems associated with most combined paging
and segmentation schemes [86, 93]. All segments have the same basic
format, allowing access to them to be handled in a uniform manner
[102]. Segments contain data and capabilities for other segments,
allowing arbitrarily complex graph structures of segments to be
constructed. The architecture ensures that capabilities cannot be
arbitrarily modified.

Processes never directly use virtual addresses, rather they use offsets
relative to a segment [102]. Segments are addressed using segment
capabilities. These consist of three fields, the start address, the length,
and the type and access, as shown in figure 4.9. The type field defines
the type of the data contained in the segment, and the access field
defines the allowable operations on the data. The use of segment
capabilities in addressing the virtual memory is illustrated in figure
4.10.

Start Address Length Type and Access

Figure 4.9. The Structure of a Segment Capability.

To improve efficiency of access to segments, the architecture provides
a set of special purpose registers called capability registers. To enable
access to the data stored in a segment, the appropriate segment
capability must be loaded into a capability register. Machine
instructions then access the data using addresses of the form:

8 Up to the size of an address space, as described later.

-70-

<capability register number><offset within segment>.

Any attempt to access beyond the bounds defined by the length field, or
in conflict with the rights defined in the type and access field will
cause an exception condition.

Segment Capability

Start Address | Length | Type

Paged Virtual Memory Low Addresses

-

ATt

Start of Segment

+ Offset Within
Segment Yields o
Virtual Address ——>

Page
End of Segment Boundaries

ot

R

High Addresses

-
L G gV g g

Figure 4.10. Addressing Using Segment Capabilities.

As mentioned, segment capabilities may be stored within a segment.
Such storage occurs in a segregated section of the segment, and is
achieved using a special machine instruction. A special machine
instruction is also used to load capability registers. The instruction will
only load a capability register with a segment capability that is stored in
the segregated region of another segment, and that segment must be
pointed to by another capability register. It is thus possible to securely
traverse arbitrary data structures.

A

Segments are grouped together into information-hiding modules [87,
88]. Each module presents a purely procedural interface. Access to
modules is controlled by a module capability. A module capability
consists of three fields, the module name, access list, and status, as
shown in figure 4.11. The access list defines the interface procedures
useable by the owner of the capability, and the status field defines the
operations that can be performed on the capability, such as whether it
can be copied. Module capabilities may only be stored in the data area
of segments of type "module capability”. Such segments have the type
and access fields appropriately set to prevent illegal modification of the
stored module capabilities.

Module Name Access List Status

Figure 4.11. The Structure of a Module Capability.

The first time that a process accesses a module, it uses the open
system call, providing the module capability as a parameter. A special
segment called a module call segment (MCS) is created containing,
amongst other things, segment capabilities for each of the interface
procedures available to the owner of the module capability? and for the
data encapsulated in the module. The module call segment is used for
subsequent calls on the module until the module is closed, and
improves the efficiency of such calls [67]. To create an MCS the calling
process must access the module's red tape information. This is
contained in the root page for the module. Included in the red tape is a
count of processes which currently have the module open. This count is
incremented whenever a process opens the module, and decremented
when the module is closed. The system will only allow a user to delete a
module if the user's module capability has the appropriate access
rights, and if the open count for the module is zero.

As described earlier, a capability register can only be loaded from a
segment pointed to by another capability register. This means that

7 This is in a logical sense. In fact the MCS contains a pointer to the set of capabilities for
the module interface.

there must be some starting position from which capability registers
may be loaded. Every process has a special segment called its base table
which is the root of addressing for the process. The system sets up the
base table, and maintains it, for example by modifying its contents to
change protection domains on inter-module calls.

Each MONADS module resides in a separate and unique address space.
Such address spaces are never re-used, even if the module is deleted.
The maximum aggregate size of the segments of a MONADS module is
thus 256 megabytes. The module name in a module capability is simply
the address space number of the address space occupied by the
module. Such a name is guaranteed to be unique because address
spaces are never re-used. An attempt to access a deleted module
results in an invalid module exception.

There are two distinct types of address space
(1) those which contain modules, and
(2) those which contain stacks.

The major difference between these is their handling of pointers. Stack
address spaces may contain pointers into other address spaces,
allowing, for instance, segments on a stack to contain pointers to code
and data segments in other modules. Such usage requires that all
pointers held in a stack address space are long pointers containing
volume number and within volume address space number information.

Module address spaces and are not permitted to contain pointers into
other address spaces. Thus pointers stored in a module address space
point to segments within the address space itself. These pointers are
short pointers, and do not contain volume number and within volume
address space number information. This is because these values are the
same as for the address space containing the pointers (i.e. the module
address space). Such pointers are in effect simply offsets relative to the
address space that contains them.

4.5 Conclusion

Virtual memory management techniques provide the abstraction of
larger memories than are actually physically present. These techniques
permit the running of programs whose code size exceeds the main
memory size, and the running of multiple processes when the total size
of the processes and their data is greater than the main memory size.
Virtual memory management is based on the division of the memory
space into blocks called pages, and the division of main memory into
page frames of the same size. Hardware and software is used to transfer
pages of virtual memory into and out of main memory as required.

The traditional approach to the management of such paging is to use a
page table for the virtual memory space. This table contains mapping
data enabling the location of pages both on disk and in main memory, It
has been shown that the use of such conventional page tables restricts
the possible size of the virtual memory space.

Much larger virtual memories may be efficiently managed if the
conventional page table function is split, and virtual memory disk
location mappings are separated from virtual to main memory
mappings. This technique has been used to implement 60 bit wide
virtual addresses on the experimental MONADS-PC, and will be used to
implement 128 bit wide virtual addresses on the proposed MONADS-
MM.

The use of such large virtual memories precludes the need for re-use of
virtual addresses. This is in contrast to conventional virtual memory
machines in which virtual addresses are re-used for every process
address space. The problem of security of access then arises, because
every process exists in the same virtual address space, namely the
complete virtual memory space. Security may be provided using
capabilities.

The MONADS implementation of capabilities is based on the division of
the memory space into logical segments, with the segment boundaries
orthogonal to page boundaries, and the grouping of segments into
information-hiding modules with purely procedural interfaces. Such
modules, which coincide with partitions of the virtual memory called

-74 -

address spaces, are sparsely distributed throughout the virtual address
space. Access to modules is controlled by module capabilities, and
access to the segments within a module is controlled by segment
capabilities. A module capability allows access to interface procedures
of the module by permitting the use of the segment capabilities needed
to access the code segments that implement the interface.

Chapter 5 THE MONADS DISTRIBUTED SHARED MEMORY MODEL

5.0 Introduction

The MONADS Distributed Shared Memory (DSM) model is based on a
single very large virtual memory space which encompasses all nodes in
the network. Processes running on these nodes have access to the
whole virtual memory space (subject to protection considerations),
without the need for knowledge of the storage location of the program
code and data they access. The model was initially proposed in [3], and
extended by the author in [19, 54, 55, 56]. Related schemes have been
reported in the literature [36, 74]. However these schemes allow
processes to share only a limited portion of their total address space,
and still maintain a separate file store.

We have substantially modified and extended the Abramson and Keedy
model [3] in our work on DSM [19, 54, 55, 56]. These extensions and
modifications have resulted in a more durable and efficient network. In
this chapter we describe our model for a distributed shared memory.
Initially we make the assumption that modules are never moved from
the node on which they are created. We also assume that a message
transmitted on the network is always correctly received, and that no
message is ever lost or corrupted in transmission. In chapter 6 we
relax some of these restrictions and describe how modules and volumes
may be moved. In chapter 7 we discuss the issues of network reliability,
node shutdown, stability, and how the DSM is made stable. In chapter 8
we discuss implementation issues.

5.1 The Network

The proposed network is designed to support the interconnection of
homogeneous machines using a Local Area Network (LAN). We do not
make any assumptions about the topology of the LAN, merely that it
must allow processors to be able to communicate with each other to
exchange both data and protocol messages. Topologies that satisfy this
criterion, making them suitable for use with our proposed network,
include bus (e.g. Ethernet [40, 79]) and ring (e.g. Token Ring [48] and

76 -

Cambridge Ring [85]). A minimum configuration node consists of a
processor and some private memory. Nodes may also have local disks,
as well as other peripherals such as printers, tape units, and terminals.

Nodes communicate by transmitting messages on the network. These
messages, which are listed in appendix 1, are used to implement the
up/down protocol, the address resolution protocol, the shared memory
protocol, and the data coherence protocol as described in the balance
of this chapter.

The DSM is formed by extending the paged virtual memory addressed
by each node to a single network-wide paged virtual memory. Pages,
which are of fixed size, form the unit of transfer between nodes. Each
processor has its own Address Translation Unit (ATU), as described in
chapter 4. This ATU is essential for virtual memory management at
each node because it provides a mapping between the virtual memory
pages and the page frames of the node's main memory. If a mapping
does not exist for a given virtual address, then the corresponding page
is not currently in the node's main memory and the ATU raises a page
fault interrupt. When such an interrupt is raised, the page fault
handling software is activated. The ATU supports the mapping of pages
as read-only or read-write, and maintains a modify bit which indicates
whether any byte in the page has been modified. An attempt to write to
a read-only page results in a write fault exception.

Other DSM implementations use an essentially conventional page table
in managing the shared virtual memory [36, 74]. As described in
chapter 2, the page table is used for mapping the shared virtual pages
to main memory page frames, for defining the storage location for
shared pages not currently in main memory, and for status information
used by the coherence algorithm. Before a node can obtain a copy of a
shared memory page, it must know which node is acting as the server
for the page. Since such information may only be efficiently obtained
from the page table, a full shared memory page table is maintained at
every node. The existence of this full page table enables each node to
efficiently resolve local page faults, and is also used to implement
shared memory coherence strategies. However it has major
disadvantages in terms of scaleability.

As described in Chapter 4, the MONADS architecture partitions the
virtual memory into regions with fixed maximum size. These regions
are called address spaces. Each address space contains a table, called
the address space page table, which maps the virtual pages of the
address space to pages on a logical disk or volume. Thus separate disk
page tables are maintained for every address space in the virtual
memory. These disk page tables are completely independent of the
ATU, which maps virtual addresses to main memory addresses. This
separation of the page tables for main memories and the disk page
tables means that the mapping from virtual pages to main memory page
frames can be maintained independently for each node. Since it is
necessary to maintain mappings only for those virtual pages that are
currently in the node's main memory, the table's size is proportional to
the size of the node's main memory. The virtual page to main memory
page frame mappings for a node are held in the node's ATU.

As we show in this chapter, the single node MONADS architecture can
be extended to enable efficient management of a DSM. This is achieved
without the need for a single large shared memory page table. In
contrast to both IVY [74] and Memnet [36], which require the
maintenance of a complete virtual memory page table at each node, the
MONADS scheme is thus scaleable to extremely large shared virtual
memories. To facilitate understanding we have included an alternate
state transition view of the model in appendix 2.

5.2 Addressing The Distributed Shared Memory

The addressing scheme described in chapter 4 provides a single-level
store for a single MONADS-PC node. The approach taken in the
network implementation is to extend this virtual store to encompass
the entire network. This is achieved in a completely transparent
fashion so that any byte within the entire DSM may be directly and
uniquely addressed from any machine in the network. The ability to
uniquely identify each of the networked nodes is crucial to our DSM
addressing scheme. To this end, a unique node number is allocated to

each MONADS system at the time of its manufacture. This number is
maintained in a dedicated read-only memory (ROM) in the nodel.

5.2.1 Node Numbers

As previously described, a MONADS address consists of four parts (see
figure 4.7), with the high order bits defining the volume on which the
address space containing the address is stored. For a network of
MONADS-PC computers, we partition this volume number into a unique
node number and within node volume number?. This means that a full
virtual address now consists of a unique node number, a volume number
within node, an address space number within volume, a page number
within volume, and an offset within page. This structure is shown in
figure 5.1. When a new address space is created it is allocated an
address space number with the unique node number of the creator
embedded within it. Thus every address space number, and therefore
every module number, is unique network-wide. If the address space
and/or the volume containing the address space is never moved, the
address space number defines the node and volume on which the
address space is stored.

The node at which an address space is stored is called the owner node
for the virtual pages that comprise the address space. Owner nodes act
as page servers for their pages in the resolution of page faults at other
nodes.

1 In the case of processor board replacement due to malfunction, the original node
number is transferred to the replacement processor board by moving the appropriate
ROM chip.

2 For the modified MONADS-PC the node number is 2 bits and the within node volume
number is 4 bits. The experimental network is restricted, then, to a maximum of 3 nodes
plus a "broadcast node" (see section 5.2.3). The MONADS-MM has 32 bit node numbers

and 32 bit within node volume numbers.

Node No. | Volume Number | Within Volume Address Space Number | Within AS Page | Offset

Figure 5.1. The Structure of a MONADS DSM Virtual Address.

5.2.2 Page Faults

A page fault interrupt occurs at a node because of an attempt to access
an address in a page which is not in the node's main memory and
therefore not mapped into the node's ATU. For a centralised MONADS
cbmputer, the page fault handling software is able to quickly locate the
page table for the address space containing the page because it is
maintained in a well-known location within the address space itself. As
described in section 4.3.2, in the case when the page table itself is not
in main memory, the volume number of the volume containing the
page's address space is derived from the faulting address. Each volume
contains a table of the address spaces stored on it, enabling the root
page of the address space page table to be located. The disk location of
any virtual memory page can be rapidly found from this root page,
allowing the faulting page to be transferred into main memory and
mapped into the ATU and the faulting instruction to be repeated.

When a page fault occurs on a networked machine, the kernel inspects
the node number field of the virtual address to see whether the page
containing the address is stored on a local disk. If the node number is
the local one, then the local node is the owner node for the page and
resolution of the page fault can occur as described above (subject to the
issue of coherence discussed in section 5.3). If the node number is not
the local one the page fault is considered to be a remote page fault.

5.2.2.1 Remote Page Faults

To resolve a remote page fault the local node L must send a message to
the page's owner node O. This message requests node O to act as a page
server and to transmit a copy of the page back to node L. The identity
of the owner node O is the node number contained in the faulting

-80-

address itself. It is thus not necessary to reference a shared memory
page table, as required by [36, 74], to determine the identity of the
owner node.

So that it is able to transmit the requested page to node L, the kernel
at node O must bring the page into its own main memory if the page is
not already there. To do so (ignoring coherency issues), the kernel at
node O attempts to read an address in the requested page. If the
attempt succeeds, the page is currently in the main memory of node O.
If not, a page fault occurs and the page is brought into main memory.
When the page is in main memory at node O, it is mapped into the ATU
as a read-only page and locked down, thus preventing it from being
discarded as part of normal paging. A message containing the page as
data is then transmitted to L. On completion of this transmission the
page is unlocked, thus allowing its eventual discard.

When node L receives the page it is mapped into its ATU in the same
way as after retrieval from local disk3, The waiting process(es) are then
activated as for a local page fault.

In the above description we have assumed that, given the node number
of the source and destination, it is possible for messages to be
transmitted between nodes. This assumes the existence of a mapping
between the node numbers used by the DSM protocols and the physical
network addresses used in the actual transmission of messages
between nodes. In the following section we describe how this mapping
is achieved.

5.2.3 Node Address Resolution

The unique node number for a MONADS computer is defined in its
hardware when it is manufactured. These node numbers are used to
create a virtual network in the same way that IP addresses are used to
form an internet [30]. The separation of node numbers from the
physical network addresses of nodes means that we avoid making

3 However, the page is mapped into the ATU as read-only whereas a page read from local
disk would be mapped in as read/write. This is because of the coherency protocol (see
section 5.3).

-81-

assumptions about the underlying network hardware or type. As a result
we can safely embed node numbers in virtual addresses while still
allowing flexibility in the choice of underlying network#.

The use of proprietary networks such as Ethernet [40, 79] and Token
Ring [48] requires that machines be allocated network addresses
suitable for the network type. This means that translation is necessary
between the virtual node numbers used at the logical level by the
network protocols and the network specific addresses used at the
physical level.

The translations from node numbers to network addresses and vice
versa are achieved at each node using the local Network Addresses
Table (NAT). This table is of the format shown in figure 5.2 and is
maintained at each node by the local kernel. The protocol used to
maintain NATSs is similar to the ARP protocol used for binding between
virtual TCP/IP addresses and physical network addresses [30].

Logical Node Number Physical Network Address

Figure 5.2. The Structure of the Network Addresses Table.

When a node boots, it initialises the NAT table with its own node
number to network address mapping, and with a mapping between the
logical broadcast node number and the equivalent network broadcast
address. A message transmitted to the broadcast virtual node is
received by all nodes physically connected to the network. Most LAN
architectures support such a broadcast address. For example, Ethernet
uses the physical broadcast address FFFFFFFFFFFF [114].

4 In the prototype implementation all machines are connected to an ethernet.

-82-

After initialising the NAT, the node broadcasts a here_i_am message
with its node number and physical network address as parameters. On
receipt of this message each of the other active nodes updates its local
NAT, and replies with a here_i_am_too message containing its node
number and physical network address as parameters. When a node is
shut down, it broadcasts a node_going_down message, with the result
that all other nodes remove the appropriate NAT entry.

It should be noted that a protocol similar to RARP [30] is not needed
for diskless nodes in the MONADS network because each machine's
logical node number is embedded in its hardware. This is in contrast to
IP addresses, which are allocated by the local system manager, and thus
cannot be stored between successive bootstraps of a diskless TCP/IP
node.

5.3 Data Coherency

According to the described page fault resolution protocol, an owner
node provides a copy of a page to any remote node on receipt of a
request from that node. This means that any time there may be copies
of a particular page P in the main memories of different nodes,
including the memory of the owner node. For the multiple views of the
data contained in page P to be considered coherent, each of the
processors must see the same version of the page. If, for instance, each
of the nodes with P in main memory have only read locations in the
page since obtaining it from the memory server, then the copies are
identical and each processor has a coherent view of P.

If one or more of the processors writes to locations in P, then the
copies in the main memories are no longer identical, and so the
processors do not have a coherent view of data in the page. The
provision of a coherent view of shared data in a centralised system with
shared memory is implicit. Coherence in the DSM could be achieved by
higher level code that enforced some coherency algorithm. This would
require that programmers include specialised code in programs to
implement the algorithm. Since we aim to provide shared virtual
memory whose distribution is transparent to the user (and thus the

programmer), such a solution to the memory coherency problem is not
suitable.

The problem of maintaining a coherent view of the data stored in a
page when multiple copies of the page can exist across the network is
similar to that of cache coherence in multiprocessors [36, 71, 75]
because, in effect, the main memory of each node is a local cache of
virtual memory pages. Consequently similar techniques to those used to
achieve cache coherence may be applied. In this section we describe
the multiple reader/single writer protocol used to ensure data
coherence. Protocol messages are only sent to nodes listed by the
owner node as having copies of the page, requiring fewer messages
than schemes such as "shares" [57], which broadcasts protocol
messages, requiring the processing of messages by nodes with no
interest in the subject page.

The protocol is based on hardware support (in the ATU) for read-only
and read/write pages, as provided by the MONADS ATU (see chapter 4)
and most commercial memory management units. The ATU also
records whether a page has been modified since being mapped in. Such
support provides two types of memory access fault and associated
interrupt, the usual page fault, and a write fault which is raised if an
attempt is made to write to a read-only page. The ATU may also be
queried to check the modify status of a page.

5.3.1 Multiple Reader/Single Writer Protocol

As suggested by its name, this protocol allows for any number of
simultaneous readers of any page, or exactly one writer to the page.
Each node with disk(s) is potentially a memory server for the pages
stored on its disk(s), and is responsible for ensuring that the multiple
reader/single writer protocol is adhered to for these pages. To achieve
this the kernel at every node maintains an Exported Pages Table (XPT).
This table contains an entry for every owned page for which a copy
currently exists in the main memory of another node. These entries
consist of an reading nodes field, a page number field which identifies
the page, a disk page field which defines where the page is stored on
disk, and a current version field, as shown in figure 5.3. The reading
nodes field, which is similar to the copy set used in IVY [74], contains
-84 -

the node numbers of nodes with a read-only copy of the page in their
main memory (excluding the node whose number appears in the
current version field). The disk page field is used to create the MMT
entry for a modified exported page when it is returned to the owner.
The current version field contains the node number of the node with a
read/write copy of the page, or if there are read-only copies, the field
defines which node has the most recent version of the page. If a copy of
the page is present in the main memory of the owner node as well as in
the memories of other nodes, the protocol guarantees that the current
version field contains the owner node number5. If the owner node has
an up-to-date copy of the page, but not currently in its main memory,
and an XPT entry exists for the page, the current version field is set to
null. The full use of the current version field is explained later in this
section. The XPT for a diskless node is always empty because diskless
nodes cannot act as page servers.

Reading | Disk | Current Version

Page Number Nodes Puts Node

Figure 5.3. The Structure of the Exported Pages Table.

Nodes also maintain a table listing imported pages currently in their
main memory. This table is called the Imported Pages Table (IPT), with
entries consisting of a server node number field, a page number field
which identifies the page, and a main memory page frame number field.
The structure of the IPT is shown in figure 5.4.

5 If the page is present in the memory of the owner node only, no XPT entry exists for the
page.

Virtual Server | Main Memory Page
Page Number Node Frame Number

Figure 5.4. The Structure of the Imported Pages Table.

Pages in the physical memory of a node may be marked as read-only or
read/write in the node's ATU. The default state for a page read from a
local disk for local use is read/write, whereas the default state for a
remote page is read-only. Any number of read-only copies of a page are
allowed to exist in the physical memories of nodes in the network at
any one time. The coherency protocol guarantees that at any time there
is either

(a) zero or more read-only copies of the page or
(b) exactly one read-write copy.

Thus, if a read-write copy of a page exists in the physical memory of a
node, then it is the only copy of the page in physical memory of any
node in the network. The kernel of the owner node maintains, in the
XPT, a record of any copies of a page that have been sent to other
nodes. This is analogous to the way page owners in IVY [74] keep a copy
set for each pageS.

Unlike the "shares" approach proposed in [57], which allows any node
to distribute copies of a "granule" (subject to its share status), a
MONADS owner node is responsible for controlling the distribution of
its pages. This is similar to the method of page distribution used in the
distributed Napier architecture [72, 121]. Distributed Napier uses a

6 Page ownership status in IVY reflects the owner node's right to modify the page.
MONADS page ownership reflects the fact that the page is stored at the owner node.

-85-

centralised Stable Store Server which acts as a page server for the
entire store, and to which all page requests are made. This server is
responsible for controlling the supply of pages to the connected client
nodes and the granting of appropriate page access rights. When a page
request is received by the server it either supplies the page from its
own main memory, or it instructs a client holding a copy of the page to
transmit a copy of the page to the requesting client. The MONADS DSM
extends this approach by distributing the page server role across all
nodes with local disk.

5.3.1.1 Obtaining a Read-only Copy of a Page

When a page fault for a remote page occurs at a node, the kernel
determines the owner node for the page from the page address, and
transmits a request_page message to the owner node. This message has
the requesting node number and the requested page number as
parameters. At the time of receipt of a request_page message by the
owner node, one of several scenarios may apply:

(1) no copy of the page exists in main memory network-wide, or

(2) one or more read-only copies of the page exist in main memory
network-wide but not in the main memory of the owner node,
or

(3) one or more read-only copies of the page exist in main memory
network-wide including a copy in the main memory of the
owner node, or

(4) a read/write copy of the page exists in the main memory of a
node, or

(5) it has no knowledge of the page.

The requesting node must have sent the request_page message as a
result of a page fault, so the requested page is not in the main memory
of the requesting node. The action taken in each of the above situations
is:

(1) A read-only copy of the page is transmitted to the requesting
node using a supply_page message with the page number and
page data as parameters. Because the page is not in the owner
node's main memory at the time of the request, a page fault
situation is created at the owner node by reading from an
arbitrary address in the page. When the page has been read from
the disk into the owner node's main memory, it is mapped into
the ATU as read-only, and the supply_page message is
transmitted. The owner node's number is stored in the current
version field of the XPT entry for the page, indicating that the
most up-to-date version of the page is in the main memory of
the owner node, and the requesting node's number is stored in
the read nodes field.

(2) Since the page is not in the main memory of the owner node in
this case, an XPT current version field entry for the page, if it
exists, is not for the owner node?. If a current version entry
does exist, a send_page message is sent to the node listed in
the current version field. Parameters to the send_page message
are the node number of the node requesting the page, and the
page number. If the XPT current version field entry for the page
is a null entry8, then the send_page message is transmitted to
an arbitrarily selected node whose number appears in the read
nodes field. In either case the receiver of the send_page
message responds by transmitting a supply_page message to the
requesting node, and the requesting node's number is added to
the read nodes field of the owner's XPT.

(3) The owner node transmits a supply_page message to the
requesting node. If no entry for the page exists in the owner
node's XPT9, an XPT entry is created for the page and the owner
node is entered in the current version field. The requesting

7 The existence of a non-null entry in the current version field indicates, in this case,
that the owner node does not have the most recent version of the page.

8 This indicates that the owner node does have the most recent version of the page, but in
this case not currently in its main memory.

9 This indicates that no node other than the owner had the page in main memory prior to

the request_page message.

node's number is added to the read nodes field of the owner's
XPT.

(4) If the read/write copy is in the main memory of the owner
node, the page is marked as modified read-only in the owner
node's ATU and an entry is created for the page in the XPT.
This entry has the owner node number in the current version
field and the requesting node in the read nodes field. The
owner node then transmits a supply_page message to the
requesting node. If the read/write copy is not in the main
memory of the owner node, a send_page message is sent to the
node with the read/write copy. When the writing node receives
this message, it marks the page as read-only in its ATU0, and
transmits a supply_page message to the requesting node. The
owner node enters the requesting node in the read nodes field
of the XPT entry for the page.

(5) All the server node can do in this situation is transmit an
invalid_address_space message to the requesting node. This
message contains the requested page number as a parameter.

In all cases except case (5), the page is mapped into the requesting
node's ATU as read-only, the occupied main memory page frame is
marked as imported in the MMT, and an entry is made in the IPT
recording the page number and owner node number. In case (5) an
exception condition exists at the requesting node.

If a page fault occurs at the owner node, the kernel must determine
whether copies of the page exist at other nodes. To do this it checks
the XPT. If no XPT entry exists for the page, then the page is brought
into main memory from local disk, and mapped into the ATU as
read/write. If a remote copy of the page does exist, then it is usually
more efficient for a copy of the page to be retrieved from such a remote
node than to load it into main memory from local disk [27], particularly

10 The page would have been marked as modified in the node's ATU when modification
occurred. The combination of modified and read-only in the ATU indicates that the node
has the most recent version of the page, and must return a copy of the page to the owner

node prior to discarding the page.

when the possibility of recursive page faults is considered (see section
4.3.2). The send_page message is used by the owner node to obtain a
copy of the page. The recipient of the send_page message is
determined by reference to the XPT. If a current version node is listed
the message is transmitted to it, otherwise the message is sent to one
of the read nodes.

5.3.1.2 Obtaining a Read/write Copy of a Page

A node obtains read/write access to a page by increasing the access
rights of a read-only page that already resides in the node's main
memory. To do this a remote node transmits a
request_changed_access_rights message to the page owner.
Parameters to the message are the requesting node number, the page
number, and the required access rights (in this case read/write).

The situation at the time of the read/write request is that either

(1) a read-only copy of the page exists in the main memory of the
requesting node only, or

(2) one or more read-only copies of the page exist in main memory
system-wide, including the memory of the requesting node.

The actions taken in each case are:

(1) the owner node transmits an access_rights_changed message to
the requesting node granting a change in page status to
read /write. Parameters to the message are the page number and
the new access rights.

(2) an invalidate_page message is sent to all nodes with a copy of
the page (excepting the requesting node). This message, which
has the page number as its parameter, requests that the
receiving node's copy of the page be invalidated. The recipients
of the invalidate_page message are determined from the read
nodes field and the current version field of the page entry in the
owner node's XPT. The reply to an invalidate_page message is
the page_invalidated message, which has the sending node's

-90-

node number and the page number as parameters. As each
page_invalidated message is received, the owner node removes
the entry for the sending node from the page entry in the XPT.
When the only node remaining in the XPT entry is the
requesting node, all page_invalidated messages have been
received, so the owner node transmits an
access_rights_changed message to the requesting node
granting a change in page status to read/write.

In each case the owner node enters the requesting node's number in
the current version field of the Exported Pages Table entry for the page
(also removing the requesting node from the read nodes field if
necessary). This indicates to the owner that the requesting node now
holds the most recent version of the page because the page is held with
read/write access. The requesting node also marks the page as
read/write in its ATU. A copy of the page in the main memory of the
owner node would, of course, also be invalidated prior to the
transmission of the access_rights_changed message, but this
invalidation would be an internal kernel operation and would not
require transmission of a message.

5.3.1.3 Page Discard

As part of the management of virtual memory at a node, page discard
may occur. If the page to be removed is local, the kernel checks the
XPT to determine whether an entry exists for the page. If an entry does
exist, then the current version field indicates the owner node. The
entry in this field must be replaced by a null entry, indicating that the
page is no longer in the main memory of the owner node. The modified
status of the page in the ATU indicates whether the page must be
flushed to disk prior to discard. If the page is marked as modified then
the copy in main memory is more recent than the copy on disk and so
the page must be flushed to disk. If the page is marked as unmodified
then the copy on disk is the most recent and the copy in main memory
may be discarded.

If the page to be removed is not local, as indicated by the presence of
an IPT entry for the page, then either

-9l -

(a) the page is read-only, or unmodified read/write!l, in which
cases a page_invalidated message is sent to the owner node
indicating that the page has been removed, allowing the owner
node to update its XPT by deleting the entry for the removed
page. In the case of the unmodified read/write page, or in the
case of the removal of the last exported read-only copy of the
page, the XPT entry for the page is removed because no copy of
the page exists in main memory network-wide, or

(b) the page is modified read/write or modified read-only, in which
case the page status is reduced to read-only (thus preventing
further modification of the page in the case of modified
read/write) and a copy of the page is sent to the owner node
using a return_page message. The owner node receives the page
into its main memory and maps it in as modified read-only. The
disk page field in the XPT entry for the page is used to create
the appropriate MMT entry. The owner node then updates its
XPT by replacing the current version field in the entry for the
returned page with its own node number. If this replacement
results in an XPT entry with no read nodes for the pagel?, the
XPT entry may be removed. The owner node then confirms
receipt of the page with a page_received message back to the
returning node. The page_received message has the receiving
node number and the page number as parameters. The page is
not removed from the memory of the returning node until the
page_received message is received by the returning node. At
this stage the IPT entry for the page is also removed.

The orderly shut down of a node is a related problem because shutting
down a node may involve firstly flushing virtual pages to disk. We
discuss node shutdown in the following section.

11 A read/write page may be unmodified if the process wishing to modify the page had not
yet been reactivated since receipt of the access_rights_changed message that granted the

read/write access.

12 This would be the case if the discarded page had been held with read /write access rights
immediately prior to the discard.

5.3.1.4 Node Shutdown

When a node is shut down in an orderly fashion by an operating system
utility similar to the Unix halt instruction [111], modified virtual pages
held in main memory are flushed to disk. In the case of the MONADS
DSM, the orderly shut down of a node may involve other nodes in the
network because of the presence of

(1) imported pages in the node's main memory, and
(2) pages owned by the node in other node's main memories.

An imported page in the node's main memory may be either modified
or unmodified. A copy of any modified page must be returned to the
owner node prior to discard of the page to ensure that the
modifications are not lost. This is achieved using the return_page
message. On receipt of this message the owner node adjusts its XPT by
either removing the entry for the page (if the shut down node was the
only remote node with a copy of the page), or writing its own name in
the current version field of the XPT entry (thus indicating that the
current version of the page resides in the owner's main memory). An
unmodified page may be simply discarded!3. Such discard is signalled
to the owner node using the page_invalidated message. On receipt of
this message the owner node adjusts its XPT entry for the page by
removing the shut down node from the read nodes field, and removing
the entry entirely if no remote nodes have copies of the page.

Prior to shutdown a node must retrieve any pages owned by it for which
another node holds the current version. This is necessary to enable the
most recent version of these pages to be flushed to disk at the owner
node. The owner's XPT contains an entry for every page exported by
the node. An invalidate_page message is transmitted for each page to
the remote nodes listed in the XPT. When this message is received, the
receiving node invalidates the page if it is unmodified. If the page is
modified, the receiving node

13 The owner node or a node listed in the current version field of the owner's XPT entry

for the page is responsible for ensuring that the page is flushed to disk if necessary.

(1) reduces the page access to read-only if it is held with
read/write access,

(2) returns a copy of the page to the owner node using a
return_page message, and

(3) waits for a page_received message confirming that the owner
node has received the up-to-date copy. When this message is
received the page is invalidated.

An alternate approach to the shutdown of an owner node is to use a
node_shutting_down message with the sending node number as a
parameter. This message is transmitted to every remote node listed in
the sending node's XPT as having pages owned by the node. On receipt
of such a message, a node must remove the sending node from its NAT
and return an up-to-date copy of every modified page owned by the
sending node as described above. The importing nodes may then

(1) invalidate any pages owned by the shut down node, as described
above, or

(2) continue to use the pages with read-only access until the pages
are no longer needed and discarded. Any attempt to modify
such a page would result in an access violation condition. The
fact that the owner for these pages is off-line can be detected
from the lack of a NAT entry for the owner, so on page discard
no page_invalidated message would be transmitted. This option
allows, for instance, a library segment already imported into
main memory to remain available to a compiler even though the
owner node is shut down.

5.3.1.5 Discussion

The described protocol guarantees that nodes have a coherent view of
the virtual memory. The DSM system can, however, experience page
thrashing, meaning that a page is constantly being transferred between
nodes whilst not being in the nodes' main memory long enough to be
used by them. This situation occurs if a number of nodes concurrently
attempt a series of writes to the page. Initially it appears that higher

o4 -

level synchronisation mechanisms would prevent such thrashing.
However, because page and segment boundaries are decoupled, there is
no guarantee that the nodes are attempting to write to logically related
data in the page, because they may in fact be attempting to write to
different segments. In such a situation higher level synchronisation
mechanisms alone would not prevent page thrashing,

The likelihood of page thrashing can be greatly reduced by
guaranteeing a writer a small time interval (a few milliseconds) of
uninterrupted write access to a page. This can be implemented by the
writing node, which waits the appropriate interval before acting on a
send_page message. On expiration of the time interval, the writing
node, in accordance with the coherency protocol, reduces its access to
the page to read-only, and transmits a copy of the page to the node
indicated in the send_page message.

The issue of higher level process synchronisation is discussed in the
next section.

5.4 Process Synchronisation

Process synchronisation is necessary to prevent two or more processes
from accessing some shared resource (e.g. memory, file) when the final
result depends on the order of the process' access to the data. The
problem in such situations is that more than one process is able to
access the shared resource at the same time. The solution is to
implement mutual exclusion, that is to ensure that if one process is
accessing the shared resource, then no other process is able to access
the resource. The part of the program code in which the shared
resource is accessed is called a critical section.

There are a number of well known methods of achieving mutual
exclusion, including busy waiting [89, 90], and semaphores [41, 60, 66].
Busy wait and test and set are inefficient both in terms of processor
utilisation and network traffic. Semaphores are supported by the
MONADS kernel [69], and their use will successfully synchronise access
to the DSM. The problem with the use of semaphores in the DSM is
that processes blocked on a semaphore S are potentially suspended on
a number of different nodes in the network. Associated with this is the

-95-

possibility that the kernel at a node may have to activate a process
suspended at another node.

A MONADS semaphore S is a shared data structure consisting of a
counter and a set of waiting processes. Let us consider a process
wishing to enter a critical section protected by S. The process uses the
hardware P instruction with S as a parameter to register its desire to
enter the critical section. The result of this operation is that the
semaphore counter is decremented and either the process is
immediately allowed to enter the critical section or the process is
suspended waiting for the section to become free. If the process is
suspended it is added to the set of waiting processes.

When a process leaves the critical section it signals this fact with a V
operation on S. The effect of the V operation is to increment the
counter, and if any processes are suspended on the semaphore, one of
them is activated. On a single MONADS node, such activation simply
involves moving the newly activated process from the suspended to the
waiting kernel queues, from which the process will be activated by the
process scheduler. When the nodes are part of a network, a V operation
may involve the activation of a process suspended on a different node.
Thus the node number must be maintained for suspended processes,
allowing a node-to-node message to be used to activate them.

The message used to activate a remote process is the activate_process
message, which has the process number as a parameter. Since each
MONADS process exists in a unique stack address space, and the
creating node number is embedded in the address space number, the
destination node for the activate_process message forms part of the
process number itself. When the activate_process message is received,
the receiving kernel uses the process number to identify the process,
after which it moves the process from the suspended queue to the
waiting queue.

The in-process model used for MONADS processes [62] which results
in a manageable number of processes system-wide, coupled with the
unique naming of address spaces, results in unique process
identification without the need for special process naming protocols
(e.g. [27, 84]). Network-wide process synchronisation is thus achieved

-06-

with the addition of only one message to those needed for the memory
server functions and coherency control.

5.5 Conclusion

In this chapter we described the MONADS DSM model. This model
exploits the wide addresses provided by the MONADS architecture by
including an owner node number in every virtual address. This
embedded owner node number allows the kernel at a node to
determine whether a page fault is resolveable locally. If not, the node
number is used by the kernel as the logical destination address for a
message requesting provision of a copy of the appropriate virtual
memory page. When the page is received, it is used to resolve the page
fault in the same way that page faults are resolved by access to local
disk in non-networked machines. Data coherency is maintained using a
multiple reader/single writer protocol.

The creation of the DSM involved changes only to the page fault
handling and process scheduling parts of the centralised MONADS
kernel. User programs written for centralised use can run unmodified
on the networked machines because data is accessed by address rather
than by location and name. The design supports the use of one or more
nodes with attached disks which perform a memory server function,
and allows for diskless nodes.

In describing the scheme we made the assumption that modules and
volumes always remain in their original locations. This assumption,
whilst necessary to enable addresses to define owner nodes, results in
an overly restrictive system because it precludes the mounting of
removeable disks on foreign nodes and the movement of modules
between nodes. In chapter 6 we show how the MONADS DSM model
may be extended to allow the movement of modules between volumes
and volumes between nodes.

Chapter 6 ADDRESSING MOVED MODULES

6.0 Introduction

The discussion in chapter 5 assumes that once a volume is mounted at
a node it is never moved from that node, and that an address space (or
module) is never moved from the volume on which it was originally
created. This assumption allows us to rely on the fact that the creating
node number and within node address space number embedded in the
module name and the virtual address of data within the module
accurately describes the location of the module and its data. When a
remote page fault occurs the kernel uses this embedded information to
determine the storage or owner node for the page. The kernel then
transmits a request_page message to the owner node as part of the
page fault resolution protocol.

Disallowing the migration of volumes between nodes and the migration
of modules between volumes results in an architecture that is
unacceptably restrictive. It is sensible, for instance, to allow a disk from
a failed node to be mounted at another functional node, thus allowing
the data stored on the disk to be accessed while the failed node is
being repaired. It should also be possible to mount removeable disks on
any node with a suitable disk drive unit. When a user moves
permanently from one node in the network to another, it is sensible to
move the modules owned by the user to a volume mounted on the new
node, thus allowing the user to access his or her modules without using
network bandwidth.

Achieving such migration is not a trivial task because the location
information embedded in addresses is crucial to efficient access to data
in the network. Location information cannot be simply changed to
reflect the new node and volume numbers when data migrates. This is
because such a change would effectively move each module to a
different address space, thus changing the module's name. The name
field of a module capability used to access a module contains the
address space number of the address space occupied by the module.
Existing module capabilities for such a moved module would thus

contain the address space number of the old address space in the name
field. This means that these existing module capabilities would instantly
become invalid, and their subsequent use would result in an invalid
module exception.

In this chapter, which expands work previously published by the author
[19], we discuss how volumes are permitted to migrate between nodes
in the network, and how modules are permitted to migrate to different
volumes. In the following section, section 6.1, we discuss the relocation
of volumes. We then discuss, in section 6.2, the movement of modules
between volumes.

6.1 Relocating Volumes

In this section we consider the relocation of a volume from one node to
another. The relocation of a volume from one physical disk to another
disk mounted on the same node! is logically equivalent to no movement
at all, and as such is not discussed further. The relocation of a complete
volume may involve

(a) placement of a removeable disk in a disk drive unit connected
to a different node in the network, or

(b) connection of a fixed disk to a different node in the network.

When a volume is relocated to a different node, the node number
embedded in addresses stored on the volume describes the creating
node rather than the owner node. This means that the node
number/volume number part of the module capabilities used to access
modules on the volume may no longer be sufficient to allow the page
fault handler to locate pages of the module.

From the viewpoint of a node wishing to resolve a page fault, such
relocated volumes fall into two categories:

(1) volumes created on another node and mounted locally, and

1 This would occur when restoring from backup media after a disk failure, or when

moving a volume to a faster disk to improve performance.

~99-

(2) volumes mounted on some remote node A but created on
another node B.

In the following sub-sections we discuss resolution of page faults for
pages stored on relocated volumes in each of these categories.

6.1.1 Locally Mounted Volumes

In chapter 5 we assumed that all locally mounted volumes had been
locally created. Each entry in the Local Mount Table (LMT, see section
4.3.2) thus consisted of fields defining the volume number and the disk
drive number. The LMT did not need to define which node created the
mounted volume because this was, by implication, the local node.
Allowing volumes to migrate between nodes renders such a LMT
inadequate. For example, using the LMT described in section 4.3.2, an
entry for volume V created at node A and now mounted on node B is
indistinguishable from an entry for volume V created at node B and still
mounted on node B.

To allow differentiation between volumes created and mounted locally
and volumes created on another node but mounted locally, an extra
field, the creating node number field is added to the LMT, as shown in
figure 6.1. This extended LMT allows the kernel at a node to recognise
Jforeign volumes mounted on its local disk drives. Using the above
example, the creating node number field in the extended LMT
differentiates between entries for volume AV created at node A and
currently mounted at node B and volume BV created and mounted at
node B.

When the page fault handler attempts to resolve a local page fault, it
compares the unique node number/volume number pair in the faulting
address with the creating node number/volume number fields in the
LMT. If a match is found, the required volume is locally mounted. In
section 4.3.2 we showed how a virtual memory page, stored on a
volume V) which was created on some node A and currently still
mounted on node A, may be accessed by a process running on node A.
This same technique is used to allow the pages stored on volume Vo,
which was created on node A but currently mounted on node B, to be
accessed by a process running on node B. The extension to the LMT

-100-

has thus allowed all locally resolveable page faults to be identified.
These page faults are then resolved by access to the appropriate locally
mounted volume.

Volume Disk Drive | Disk Address of Page Zero Creating
Number Number of Address Space Zero Node

Figure 6.1. The Structure of the Extended Local Mount Table,

In this section we showed how a page, stored on volume V9 which was
created on node A but currently mounted on node B, may be accessed
by processes running on node B. The kernel on node B recognises that
the volume is locally mounted by referring to its Local Mount Table
(LMT). In the next section we describe how processes running on

nodes other than node B (including processes running on node A)
access pages stored on volume Vs,

6.1.2 Moved Volumes Mounted on Remote Nodes

The problem with access by other nodes to a page stored on a relocated
volume such as Vjy is that the requesting kernel has no idea where to
send the request_page message. This is because the node number
embedded in the virtual address of the required page is the number of
the volume's creating node. Since the volume has been relocated, this
creating node number does not indicate where the volume is currently
mounted. The solution is for every kernel to maintain a Foreign Mount
Table (FMT) with entries included on a need to know basis. The FMT
describes the nodes on which relocated volumes are currently
mounted. The table has entries consisting of a creating node
number/within node volume number field and a node where mounted
field, as shown in figure 6.2.

-101 -

Creating Node/ Node Where
Within Node Volume Currently Mounted

Figure 6.2. The Structure of the Foreign Mount Table.

The FMT at a node N contains an entry for each relocated volume that
is of interest to N. Relocated volumes of interest are either:

-

(1) volumes not mounted on N which contain virtual memory pages
being used by processes running on N, or

(2) volumes which were originally created on N and that are
currently mounted on some other node. Such a volume is of
interest to N if a node other than the mounting node is using
virtual memory pages contained in the volume.

As suggested by this definition of "relocated volumes of interest”, the
FMT is used by the kernel for two purposes:

(1) to enable a non-owner kernel to transmit request_page
messages to the correct owner node for the page, and

(2) to enable an ex-owner kernel to advise nodes about the current
location of relocated volumes created by it.

In the following sub-sections we describe the use of the FMT for each
of these purposes.

6.1.2.1 Obtaining Pages From Relocated Volumes

When a process running on node N generates an address, the address
indicates a virtual memory page that is stored either

-102 -

(a) on a volume mounted on node N, or
(b) on a remote volume mounted on its creating node, or
(c) on remote volume not mounted on its creating node.

If a copy of the virtual memory page is not in main memory, the ATU
generates a page fault. When a page fault occurs, the kernel extracts the
node number/volume number pair from the address and attempts to
find a matching entry in the LMT. Such an entry exists if the volume
containing the page is in category (a). If the LMT entry does exist, the
page fault is resolved as described in section 6.1.1.

If the volume is not in category (a), an LMT entry does not exist for the
volume. This means that the page fault is remote, and that a
request_page message must be transmitted to the owner node. The
owner node is the mounting node for the volume containing the page.
The volume, of course, may or may not be mounted on its creating
node, meaning that the owner node may not be the creating node.
When a page fault occurs, the kernel must determine the mounting
node for the volume containing the faulting page. Once the kernel
knows where the volume is mounted, it can continue resolution of the
page fault.

A category (b) volume, once it has been identified as such, is not a
problem because its mounting node is the node whose number is
embedded in the faulting address. Pages stored on such a volume are
obtained as described in section 5.3.1.1.

The mounting node for a category (c) volume is not defined by the
faulting address, and is not described in the LMT. It is to distinguish
such volumes from category (b) volumes that we use the FMT, which
identifies those remote volumes not mounted on their creating nodes.
Let us assume at this stage that the required FMT entries exist. In
section 6.1.2.2 we describe how FMT entries are created.

The full sequence of steps taken by the kernel to determine where the
volume is mounted is:

-103-

(1) Compare the node number/volume number for the volume with
the equivalent field in the LMT. If a matching entry is found,
this means that the volume is locally mounted and the page fault
may be resolved locally. If the appropriate LMT entry does not
exist, then

(2) Compare the node number/volume number for the volume with
the equivalent field in the FMT. If a matching entry is found,
transmit a request_page message to the node indicated in the
FMT. If the appropriate FMT entry does not exist, then

(3) Assume that the volume is still mounted on the creating node,
and transmit a request_page message to the creating node
indicated in the faulting address.

By taking these steps the kernel is able to determine the mounting
node for any currently mounted volume. In defining the steps, however,
we simply assumed that all necessary FMT entries are present. In the
next section we describe how the FMT entries are created.

6.1.2.2 Creating the Foreign Mount Table

Let us consider again the situation in which a volume Vs, which was
created on node A, is unmounted from A and subsequently mounted on
node B. The first time after this move that any node, except for nodes A
or B, attempts to access a page from Vg it expects that the volume is
still mounted on the creating node A. Node A knows that Vg is not
locally mounted because its kernel has no LMT entry for the volume2.
Node B knows that the volume is locally mounted because its kernel
does have a corresponding LMT entry. Thus the only node with
accurate knowledge of the mounting node for Vs is node B.

The kernel at the creating node, node A, acts as an adviser for other
nodes with an interest in the location of Va. To enable it to fulfil this
role, the kernel at A must itself determine where V5 is mounted. We
consider that two strategies for this determination are worthy of
discussion.

2 However, node A does not, necessarily kmow where the volume is mounted.

-104 -

(1) The creating node is informed whenever a volume created by it
is mounted on another node. This strategy gives advance notice
of volume location to creating nodes.

(2) The creating node determines where a volume created by it is
mounted only when it detects an expression of interest in the
volume. This strategy extends the need to know basis for FMT
entries to the creating node.

The implementation of strategy (1) is simple. Whenever a moved
volume is mounted, the kernel at the mounting node transmits a
volume_mounted message to the creating node. This message includes
the mounting node number and the volume number as parameters. On
receipt of this message the creating node creates an FMT entry for the
volume. In the example above, B transmits a message to A informing it
that Vo is now mounted at B. The kernel at node A creates an FMT
entry recording that node B is the mounting node for Vg . At this stage
only nodes A and B are aware of the correct mounting node for Va.

If node A receives a request_page message sent by node C and asking
for a page from V3, node A responds to the request, and to all such
subsequent requests from other nodes, with a volume_mounted
message back to the requesting node. This volume_mounted message
has node B (the mounting node number) and Vg (the mounted volume)
as parameters. On receipt of this message, node C updates its FMT and
repeats the request_page message, this time to the current owner
node (in this case B). The problems with this strategy are that

(a) the FMT at the creating node contains an entry for every moved
volume created at the node, even if the volume is not being
accessed by the creating node or remote nodes other than the
mounting node. Such entries are wasteful of space, and

(b) if the creating node is off-line when such a moved volume is
mounted, it does not receive the volume_mounted message, and
so does not create an FMT entry for the volume. In this situation
the node must follow strategy (2) when it detects an expression
of interest in the volume.

-105-

The implementation of strategy (2) is as follows. Since FMT entries are
included on a need to know basis, A waits for an expression of interest
in Vg before attempting to determine where the volume is currently
mounted. If, for instance, Vg is a partition of a removeable disk
mounted at node B purely for use at that node, the kernel at A need
never be aware of such mounting.

From the viewpoint of node A, an expression of interest in Vs is either

(a) a page fault for a page on Vg that occurs at node A itself, or

(b) the receipt by the kernel at A of a request_page message asking
for a page stored on Vy. Let us assume that such a message was

sent by a third node C3.

In either of these situations, the kernel at A must determine where Vg

is currently mounted. In the case of the local page fault, the location of
Va9 is needed so that the kernel at A can request the page from the new
owner node. In the case of the receipt of a request_page message from
node C, the kernel at A must determine the location of Vg so that it can

advise the kernel at C of the new owner node's number.

To determine the new location of V5, node A broadcasts a
where_is_volume_mounted message. This message has the requesting
node number (A) and the required volume number (Vg) as parameters.
When the mounting node receives a where_is_volume_mounted
message, its kernel responds with a volume_mounted message,
including the mounting node number and the volume number as
parameters.

On receipt of the volume_mounted message, node A updates its FMT,
in this example with an entry indicating that Vg is currently mounted
on node B. If the original interest in Vo was a page fault at A, this page
fault may now be resolved by the transmission of a request_page
message to B. If the original interest in Vo was a request_page message
from node C, node A responds to the request, and to all such
subsequent requests from other nodes, with a volume_mounted

3 Node C is, at this stage, unaware of the relocation of Vg. It therefore assumes that its

page fault can be resolved by the creating node A.

-108 -

message back to the requesting node. This volume_mounted message
has node B (the mounting node number) and Vg (the mounted volume)
as parameters. On receipt of this message, node C updates its FMT and
repeats the request_page message, this time to the current owner
node (in this case B).

The described scheme assumes that the creating node, A, is on-line at
the time of an attempted access to volume Va. If this is not the case,
and node A is off-line, node C does not receive a reply to its
request_page message and eventually times out on its request. Simply
failing the request at this stage is not good enough, because Vg may
have been moved to node B for the express purpose of maintaining
access to it during rectification of some breakdown at node A. On time-
out of the request_page message, node C broadcasts a
where_is_volume_mounted message. Node B responds by transmitting
a node_mounted message to C. On receipt of this message, the kernel
at C updates its FMT and transmits the request_page message to node
B. Thus if the creating node A is off-line, other nodes may still
determine the mounting node for Vg, meaning that pages stored on the
volume are accessible.

It is possible, of course, that both the mounting node, B, and the
creating node A, are off-line4. In this case, C does not receive a reply to
its request_page message or to its subsequent
where_is_volume_mounted message. Time-out on the reply to both of
these messages indicates that Vg is not mounted anywhere, and thus
the required page is not available. In this case any existing FMT entry
for the volume is removed, indicating that the kernel has no knowledge
of its current location. When the volume is remounted, and node C
subsequently re-accesses a page on it, the FMT entry is recreated if
necessary as described above. In the unlikely event of the FMT
becoming too large for the space allocated to it by the kernel, the
kernel simply removes all entries, and rebuilds the table incrementally
according to the current DSM access requirements.

4 In the general case, the mounting node and the creating node may be one-and-the-same.

-107 -

6.1.3 Discussion

The described protocol ensures that the pages on a mounted volume
may be accessed by name even if the volume is not mounted on its
creating node®. This is significant because the node number of the
creating node is embedded in virtual addresses as an integral part of
the DSM addressing scheme. The result is that a volume may be
relocated without invalidating the existing capabilities that allow access
to the segments stored on the volume.

Two techniques for locating a moved volume are presented. In both of
these techniques the creating node for a volume performs an advisory
role in informing remote nodes of the current location of the volume.

The first technique involves the creating node maintaining location
information about all of its moved mounted volumes. The advantage of
this technique is that if the creating node is on-line when such a
volume is mounted, broadcast messages requesting location information
are avoided. If the creating node is off-line when the volume is
mounted, the use of the second technique still allows the creating node
to fulfil its advisory role. The disadvantage of the technique is that the
FMT at a creating node contains an entry for all of its remotely
mounted volumes. An entry would exist, for instance, for a removeable
disk moved to another node for processing exclusively at that node. In
such a situation the FMT entry at the creating node is never used. A
compromise solution is to use a parameterised mount operation, with
the parameter defining whether the creating node is to be informed of
the mount if the volume is foreign. This parameter would normally be
false if the mount is temporary (as in the case of a removeable disk),
and true for long-term mounts (as in the case of a fixed disk).

According to the second technique, the creating node determines
where one of its moved volumes is mounted only when it needs to
know this information to perform its advisory role. This technique has
the disadvantage that it requires broadcast messages, but the advantage
that entries are only made in the owner node's FMT when such entries

5 At this stage we assume that modules are never moved from their original volume. The

problem of moved modules is discussed in section 6.2.

-108 -

are needed. This means that the second technique generally results in
smaller FMTs.

An alternate solution to the problem of locating moved volumes was
seriously considered and eventually rejected. This option involved the
mounting node broadcasting a volume_mounted message whenever a
volume was mounted. This option was rejected for the following
reasons:

(1) all nodes would process and act on the broadcast message, even
those which will never have an interest in the pages stored on
the volume, and

(2) it potentially results in unnecessarily large FMT tables because
nodes would maintain information about every relocated
mounted volume.

These reasons for rejection particularly apply to removeable disks,
which are commonly mounted to enable local access to the volumes on
the disk, with no intention of remote access. Network-wide knowledge
of the mounting of such removeable disks seems a waste of network
bandwidth and processing time at remote nodes.

6.2 Relocating Modules

In some circumstances it may be desirable to move individual modules
from one volume to another, possibly but not necessarily between disks
mounted at different nodes®. A reason for this may be that a user moves
to a different site and wishes to move his data from a shared volume on
the node at the old site to a volume mounted on the node local to the
new site. Another reason may be that a user wishes to move a module
off a volume mounted at his or her home site to a removeable disk prior
to travelling.

If the module were copied onto the new volume, the copy would be to a
new address space, and so the name of the module would change,

6 Process stacks, whilst stored in address spaces, are not modules, and are not included

in this discussion. The system at this stage does not support movement of stacks.

-100-

meaning that existing module capabilities would not allow access to the
copy. In the case, for example, of user data for which no-one but the
owner has a capability, this would be satisfactory, because the owner
could simply replace his old module capability with a new one. If,
however, several copies of the module capability exist, then it may not
be possible to replace all of them with the new capability because when
a module owner distributes capabilities allowing access to a module he
does not necessarily maintain any record of the recipients of these
capabilities. In this case the ability to move a module must be achieved
without changing the name of the module.

The DSM addressing scheme described in chapter 5 relied on the
owner node information embedded in virtual addresses to provide the
destination for request_page messages. In section 6.1 we described
how virtual pages stored on moved volumes are accessed by remote
nodes. This required that the kernel at each interested node maintain
information about such relocated volumes. The movement of individual
modules between volumes presents a further addressing problem,
because the volume information embedded in the virtual addresses of
the module does not describe the location of the module. Any scheme
that allows the movement of an individual module must allow the
module to be accessed by its original name.

Addressing of moved modules involves two distinct phases as follows.

(1) The first access to a module will always be an open operation
(see section 4.4.1). During this operation the kernel has access
to a module capability for the module, and from this it can
determine the original virtual address of the root page of the
module. By extending the structure of a module capability to
include additional location information, we can take advantage
of the availability of a module capability when opening a moved
module.

(2) Once a module is open, it may be necessary to access other
pages from it. Such accesses, for a non-moved module, are
achieved using information embedded in each page address (see
sections 5.2 and 6.1.2.1). This embedded information does not
correctly describe the location of pages for a moved module.

-110-

Since the module containing the pages is already open, the
accesses are not accompanied by a module capability, and thus
no additional information is available to assist in location of the

pages.

Addressing of a moved module is achieved using structures established
when the module is opened. Allowing open modules to be moved
introduces the extra complexity of dynamic modification of such
structures. We avoid such complexity by restricting movement of
modules to those which are closed. This is not seen as a severe
restriction. It is the equivalent of restricting the movement of open
files on a conventional system. As explained in section 4.4.1, a count of
the number of processes that have a particular module open is
maintained in the module. An attempt to move a module fails if its open
count is greater than zero.

6.2.1 Addressing Moved Modules

When a process wishes to access a module, it executes the open system
call. This call, which includes the module capability as a parameter,
causes the creation of a Module Call Segment (MCS) for the module.
The MCS contains segment capabilities for the root of the data
encapsulated in the module and for the available module interface
procedures. To set up the MCS, the root page of the module must be
obtained from disk, assuming it is not currently in main memory (see
section 4.4.1). To facilitate this initial read operation, module
capabilities are extended to include information which advises the
probable storage location for moved modules. This advisory data is
readily available to the kernel when the module is opened because the
module capability must accompany the open call.

The probable storage location is provided by the inclusion of an
additional advisory field in module capabilities. The advisory field
consists of a node number/volume number pair, as shown in figure 6.3.
Unlike the other fields of module capabilities, this information is not
privileged, and the owner of the capability can cause arbitrary values to
be placed in it. The purpose of the advisory field is to provide a place
for the capability owner to store the new volume number for moved

-111 -

modules. When the capability owner issues the move_module
command, providing the module capability and destination volume
number as parameters, the advisory field of the module capability is
changed to the destination volume as part of the move_module routine.
Similarly, a user may change the advisory field in an owned module
capability if he becomes aware that another user has moved the module.
As explained in the following sections, the system also changes the
value of the advisory field when it detects that the current value is
incorrect.

Advisory Field

LT T T T T T T T Y S S

Node Number/

Volume Number Status

Module Name Access List

Figure 6.3. The Structure of the Extended Module Capability.

Using the module capability advisory information the requesting node
transmits a message to the probable owner node asking for provision of
the module root page. This message contains the requested page
number, with embedded creating node and volume numbers as a
parameter’. On receipt of such a message for a page from a moved
module, an owner node has no idea of the storage volume for the
module containing the page because the storage volume number is not
that embedded in the page address. The storage volume number is,
however, available to the requesting node because it is included in the
advisory information.

The storage volume number for moved modules is made available to
owner nodes by extending the request_page message used to obtain a
copy of a remote page. This message is extended to include a storage
volume number field containing the full identity of the volume that

7 For moved modules the creating node and volume numbers are not the same as the

storage node and volume numbers,

-112-

probably contains the required page®. When an owner node receives a
request_page message its kernel checks the storage volume number
field. If the field is not null, its contents are used by the kernel to find
the module containing the requested page®.

Once the module has been opened, a subsequent page fault for a page in
the module presents the virtual address of the page to the kernel, and
this, of course, does not include the advisory information. The
resolution of such page faults is difficult for pages in moved modules
because the new location must be determined for each individual page
unless either

(1) the page fault handler maintains a list of open moved modules
so that it can detect that the page comes from a module for
which it holds advisory information, and uses this information to
direct the request_page message to the appropriate node. This
is the approach described by the author in [19], or

(2) the addresses used to access data in the moved module have the
new location of the module embedded in them, meaning that, in
effect, the open module takes on the identity of the address
space that it now occupies as an alias.

We describe both of these options in the following sections.

6.2.2 Maintenance of Open Moved Module Data

This scheme requires four modifications to allow access to moved
modules.

These are:

8 Providing the within-node volume number is not sufficient to uniquely identify the
volume. The full identity of the volume is necessary because the volume concerned may
be a moved volume (see section 6.1.1).

9 If the volume number is incorrect because, for instance, the volume has been moved, the
receiving node signals this to the requesting node using an invalid_address_space

message.

-113-

(1) the use of the full address space number in the volume directory
stored in address space zero of volumes,

(2) the inclusion of the additional advisory field in module
capabilities, as described in section 6.2.1,

(3) the addition of a storage volume number field to request_page
messages as described in section 6.2.1, and

(4) the maintenance of a Moved Object Table (MOT) at each node.

6.2.2.1 Extended Volume Directory

Address space zero of every MONADS volume is used to store the red-
tape information for the volume (see section 4.3.2). Included in this
red-tape is a directory of the address spaces stored on the volume.
Because of the creation and deletion of address spaces over time, the
address space numbers are typically sparsely distributed, so the
directory is implemented as a hash table keyed on address space
number to provide fast lookup and a reasonably sized table. The original
non-networked architecture did not allow for movement of address
spaces between volumes. It was thus sufficient to use an address space
number relative to the volume as a key into the volume directory.

Recall that each MONADS module resides in a separate address space
with a unique number (section 4.4.1). The movement of modules
between volumes, then, involves moving the address space in which the
module resides. This movement must allow the address space number
to remain unchanged, otherwise the module name would similarly
change. To allow differentiation between original and imported address
spaces stored on a volume, the relative address space number field in
the volume directory is extended to include the full address space
number, thus including the creating node number and the original
volume number. This extended volume directory is shown in figure 6.4.
When a module is moved to a new volume, it retains its old module
(address space) number, and this number is entered into the new
volume directory. Similarly every new module (address space) created
on a volume has its full address space number entered into the volume
directory.

-114 -

Full Address Space Number

L T T e R O e T e T Y
b b

Creating Node Number/ Disk Address of Page
Volume Number Zero of Address Space

Figure 6.4. The Structure of an Extended Volume Directory Entry.

When a module is moved to another volume, the destination volume
number, in the form of a node number/volume number pair, is a
parameter to the system call used to achieve the move. The entry for
the module in the source volume's directory is altered to indicate the
destination volume as a forwarding address for the module.

This forwarding address provides a simple indirection mechanism. The
operation of this mechanism is described later in section 6.2.2.2. It
relies on the source volume being mounted at the time of an attempt to
access the module. There is, however, no guarantee of this in systems
with removeable disks and/or out of service nodes or disks. If the
source volume is not available, the indirection mechanism is useless
because the forwarding address cannot be obtained. To improve the
probability of locating a moved module in such circumstances, the
advisory fleld is added to module capabilities.

The question of removal of forwarding addresses is important in order
to control the size of the volume directory for volumes that commonly
store transient modules. Such volumes would, for instance, include
removeable disks used to take work home at nights. The possibilities
for control of forwarding addresses include

(1) the inclusion of a boolean flag as a parameter to the system call
used to move a module. Such a flag, which would default to true,
indicates whether a forwarding address for the module is to be
left on the source volume,

(2) the provision of a system call which follows the forwarding
addresses for a module. This facility removes the volume
directory entry from each volume in the forwarding address
chain, and

-115-

(3) the use of a higher level ageing mechanism which removes the
chain of forwarding addresses for modules that have resided on
their current volumes for some arbitrary period of time. This
mechanism is implemented using the system call described in
(2).

6.2.2.2 The Moved Object Table

The extended volume directory, forwarding address mechanism, and
module capability advisory field described in the previous sub-sections
allow the location of the root page of any module as required to open
the module. To allow efficient resolution of page faults for pages from
an open module the kernel maintains location information about such
modules in the Moved Object Table (MOT)10°,

A Moved Object Table is maintained by the kernel at every node, and
has entries consisting of a moved module number field describing the
creating node number, volume number, and address space number for
the moved module, a location field describing the node number and
volume number for the new location of the module, and a MCS count
field, as shown in figure 6.5. Each MOT entry maps a unique module
number to a new location.

An entry is made in the MOT whenever a process executes the open
system call for a module that has been moved from the volume on
which it was created. The open call, which includes the module
capability as a parameter, causes the creation of a Module Call Segment
(MCS) for the module. The MCS contains segment capabilities for the
available module interface procedures and for the encapsulated data of
the module. To set up the MCS the root page of the module must be
read (see section 4.4.1).

10 This name is historical. It could not be changed to Moved Module Table because the
acronym MMT clashes with that of the Main Memory Table.

-116-

Moved Module Number Location MCS Count

Creating Node, Node and Number of Local
Volume, and Address Volume Number Processes with
Space Number of Module of New Location Module Open

Figure 6.5. The Structure of a Typical Moved Object Table Entry.

If the advisory field in the presented module capability is not null, the
MOT is checked to see whether an entry already exists for the module.
If not, an entry is created in the MOT using the module number for the
moved module field, the contents of the advisory field for the location
field, and one (1) for the count field. If an entry does exist, the count
field for the existing entry is incremented by one to indicate that
another local process has the module open, and the location
information in the MOT is used to access the root page of the module.

It is possible that the owner of a module capability is unaware of the
fact that the module has been moved from its creating volume, and that
the module capability has not been used since the move, meaning that
the advisory field is null. It is also possible that the module has been
moved since the user or system last updated the advisory field. In both
of these cases the contents of the advisory field are incorrect. Prior to
any attempt to read the root page, the kernel checks the MOT to see
whether an entry exists for the module. If a corresponding entry does
exist, the kernel

(1) updates the advisory field in the presented module capability,
and

(2) uses the location information in the MOT to access the page.

-117 -

If not, the incorrect information in the advisory field is used, meaning
that the attempt to read the module red-tape results in the return of a
forwarding address. In this case the kernel

(1) updates its MOT,

(2) updates the advisory field in the presented module capability,
and

(3) repeats the read using the updated location information.

The return of the forwarding address information to the kernel is
straightforward if the read is local. If the read is remote, the remote
node answers the request_page message with a module_moved
message, including the module number and the new volume number as
parameters. On receipt of a module_moved message, the kernel
updates its MOT accordingly.

It is possible for the return of a forwarding address to occur several
times before the read operation is successful. This would happen, for
instance, if a module had been moved several times since the last
update of the module capability advisory field. Under these
circumstances the module capability advisory field would be out-of-date,
resulting in the following of forwarding addresses prior to finding the
module. When such a moved module is finally located, the system
updates the module capability with the new location information,
enabling the open operation to proceed more efficiently next time.

As indicated in this section, an open operation on a moved module
causes an increment of the MCS count field of the MOT entry for the
module. This field is used to record how many processes at the node
are accessing the module. As each of these processes closes the
module, meaning that the corresponding MCS is deleted, the MCS
count field is decremented. When the MCS count value becomes zero,
no local processes have the module open, meaning that the MOT entry
for the module may be removed from the table.

-118-

6.2.2.3 The Open Page Fault Handler Algorithm Using the MOT

The full sequence of steps taken by the page fault handler to determine
where the root page of a module is located during an open operation is

(1) Compare the module name (address space number) with the
equivalent field in the MOT. If a matching entry is found, use
the node number and volume number in the MOT entry to
access the page. If a matching entry is not found, then use the
node number and volume number from the module capability
advisory field, or from the page address if the advisory field is
blank.

(2) Compare the node number/volume number with the equivalent
field in the LMT. If a matching entry is found, this means that
the volume that probably contains the page is locally mounted,
and the page fault may be resolved locally. If the appropriate
LMT entry does not exist, then

(3) Compare the node number/volume number with the equivalent
field in the FMT. If a matching entry is found, transmit a
request_page message to the node indicated in the FMT,
including any module capability advisory information in the
storage volume number field of the message. If the appropriate
FMT entry does not exist, then

(4) Assume that the volume containing the page is still mounted on
the creating node, and transmit a request_page message to the
creating node indicated in the faulting address, then

(5) If the result of the read attempt is a forwarding address, update
the MOT and go back to step (1).

When the root page is successfully obtained, the advisory field of the
module capability used to open the module is corrected if necessary to
reflect the true location of the module.

-119-

6.2.2.4 The General Page Fault Handler Algorithm Using the MOT

The full sequence of steps taken by the page fault handler to determine
where a page is located is

(1)

(2)

(3)

Compare the module name (address space number) with the
equivalent field in the MOT. If a matching entry is found, use
the node number and volume number in the MOT entry to
access the page, including the node and volume numbers
obtained from the MOT in the storage volume number field of
the request_page message. If a matching entry is not found,
then use the node number and volume number from the page
address.

Compare the node number/volume number with the equivalent
field in the LMT. If a matching entry is found, this means that
the volume that probably contains the page is locally mounted,
and the page fault may be resolved locally. If the appropriate
LMT entry does not exist, then

Compare the node number/volume number with the equivalent
field in the FMT. If a matching entry is found, transmit a
request_page message to the node indicated in the FMT,
setting the storage volume number field of the message to nullll,
If the appropriate FMT entry does not exist, then

(4) Assume that the volume containing the page is still mounted on

the creating node, and transmit a request_page message to the
creating node indicated in the faulting address, setting the
storage volume number field of the message to null.

Notice that this sequence of steps involves checking the MOT for every
page fault. In the usual case such a check will result in a negative result

because, in general, a module will not move independently of the

volume on which it was created.

11 Since there is no MOT entry for the module (as indicated by the fact that the fault was

not handled at step 1), the module is not a moved module. The null storage volume entry

reflects this fact.

-120-

6.2.2.5 Discussion

The scheme described in section 6.2.2 can handle movements of
modules between volumes in the MONADS DSM in a manner that is
completely transparent to users. The scheme benefits from user
assistance in modifying the module capability advisory field. Note that
the algorithm for accessing a general page from an open module is
almost the same as the algorithm for accessing the root page of a
module during an open operation. The major problem with the scheme
is that the MOT must be checked as part of the resolution of every page
fault.

It is more usual for a module to remain on its original volume than it is
for the module to have been moved. Recall that the MOT contains
location information for modules that no longer reside on their creating
volume. In most cases, then, the check of the MOT that occurs as the
first step in the resolution of every page fault (see section 6.2.2.3)
simply indicates that no advisory information exists for the module. The
overhead of checking the MOT, however, applies to the resolution of
page faults for every page whether part of a moved or a non-moved
module. This means that the efficiency of page fault resolution in the
typical case suffers because of the atypical case. In contrast, the scheme
described in section 6.1 for accessing pages from a module that
remains on its original but relocated volume incurs no additional
overhead for the typical page fault, that is a page fault for a page on a
locally mounted volume,

We feel that handling of the common situation should be as efficient as
possible, and that efficiency certainly should not suffer because of the
atypical case. Any strategy used should initially assume that the problem
to be solved is of the most commonly occurring type. In the following
section we describe an alternative scheme which incurs no overhead
for pages of modules which have not been moved.

6.2.3 Use of an Alias in Addressing Moved Modules

The capability-based addressing scheme used in the MONADS
architecture relies on the fact that a module resides in a single unique
address space throughout its life. The name of this address space is

-121 -

used as the name of the module, and is embedded in the module
capabilities used to access the module. When a module is moved, it
must retain its original name so that existing module capabilities still
allow access to it. Presentation of such a module capability is only
required when the module is opened. Subsequent accesses to the pages
of an open module are achieved using virtual addresses, and do not
require the presentation of a module capability. The essence of the
technique presented in this section is that the identity of an open
module may be temporarily altered to reflect its current location, thus
allowing efficient access to the pages of the module.

The implementation of this technique for accessing moved modules
requires that

(1) A new unique address space number defining the new node,
volume, and (logical) within-volume address space is allocated
to a moved module. This number is called the current name for
the module, and is used for internal system purposes only. The
name by which the module is known to users remains the name
allocated when the module was created, meaning that all
existing module capabilities still allow access to the module.
The current name may be viewed as an alias for the original
name,

(2) An additional table is maintained in address space zero of each
volume. This table is called the Foreign Address Space Table
(FAST), and contains mappings between module names and
current names for moved modules currently stored on the
volume as shown in figure 6.6. The FAST is accessed using the
original module name as a key, and allows the current name for
any moved module stored on the volume to be determined.

(3) The method for moving modules is modified slightly so that the
volume directory entry for a moved module (as described in
section 6.2.2.1) contains the current name for the module
rather than the original module name. This effectively returns
the volume directory to its simple form, as described in section
4.3.2.

-122 -

(4) When a module is moved from a volume the volume directory of
the source volume is changed to link the current name used on
the source volume to a forwarding address in the same manner
as described in the previous section.

(5) A new message is used to request the root page of a module
during an open operation on the module. This is called the
request_root_page message, and it contains requesting node
number, requested page number, and storage volume number
fields. The request_page message is returned to its simple form
as described in section 5.3.1.1.

(6) A new message is used to supply the root page of a module
during an open operation. This is called the supply_root_page
message, and it contains supplied page number, page data, and
requested page number fields.

Module Name Current Name
Creating Node, Current Node, Volume,
Volume, and Address and (Logical) Address

Space Number of Module | Space Number of Module

Figure 6.6. The Structure of a Typical Foreign Address Space Table Entry.

When a module is opened, the root page of the module must be
accessed to allow creation of the MCS. This means that when the MCS
is set up the kernel knows whether the module is stored on its original
volume or has been moved to a different volume. If the module has been
moved, the kernel knows its new location because it has successfully
obtained a copy of the module's root page.

-123-

Efficient access to the pages of the module is achieved by altering the
segment capabilities used to access the module's data as they are stored
in the MCS. This alteration replaces the original node number, volume
number, and address space number fields with values indicating the
current node, volume, and address space numbers. Subsequent
accesses to these data segments generate virtual addresses containing
the current name rather than the original name, meaning that the page
fault handler can obtain pages from these segments as if the module
had never been moved. Since pointers to data within the module are
relative to the address space itself, they do not need to be changed as a
result of the change of address space name (see section 4.4.1).

The issue of forwarding addresses was fully discussed in section 6.2.2.1,
and this discussion also applies to their use with the FAST. If the
attempt to read the root page of a module results in the return of a
forwarding address, the kernel

(1) updates the advisory field of the presented module capability,
and

(2) repeats the read using the updated location information.

Forwarding addresses effectively form a chain which leads to the
current location of a moved module. When a module is moved then
either

(1) it is being moved for the first time, from the volume on which it
was created, or

(2) the module has been previously moved.

When the module is moved, the forwarding address is mapped with the
module name in the source volume directory. In case (1), no FAST
entry for the module is necessary at the source volume because the
volume directory entry for the module contains the original module
name.

In case (2), the FAST entry must be retained at the source volume. This
mapping from the module name to the source current name allows the
module name to be associated with the forwarding address.

-124 -

If all volumes in the forwarding address chain are mounted on a node in
the network, this sequence will eventually find the moved module. The
use of a Foreign Address Space Table (FAST) in accessing the pages of
moved modules allows page faults for moved modules to be resolved
efficiently whilst not increasing the overhead of resolution of page faults
for non-moved modules.

6.2.3.1 The Page Server Algorithm Using the FAST

Every node with attached disk(s) acts as a page server for virtual pages
stored on its disk(s). A request for a page that is not a module root page
is received in a request_page message, and is processed as described
in section 5.3.1.1,

When a server node receives a request_root_page message, it must
check the stored volume number field to determine whether the
requesting node has included module location information in the
message. If the field is null, the server node attempts to find the
requested page on the volume whose number is embedded in the page
address is used.

To find the page, the kernel at the server node checks the LMT to see
whether the indicated volume is locally mounted. If it is, then the
volume directory is checked to see whether an entry exists for the
module. If an entry does exist, then the requested page is either

(1) from a module that has not been moved from its original
volume, or

(2) from a module which was originally stored on the indicated
volume but has been subsequently moved.

In case (1) the page is supplied to the requesting node as described in
section 5.3.1.1, but using the supply_root_page message with the
supplied page number field and requested page number fields set to
the same value, indicating that the module name and current name are
the same. In case (2) a forwarding address is returned to the
requesting node as described in section 6.2.2.1.

-195-

If the stored volume number field of the request message is not null,
the kernel at the server node knows that the requested root page
comes from a moved module, and the FAST for the indicated volume is
checked. If no FAST entry exists for the module, then an
invalid_address_space message is returned to the requesting node. If a
FAST entry does exist, then it maps the module name to the
corresponding current name. The current name is then found in the
volume directory. The volume directory entry indicates either

(1) a forwarding address for the module, or
(2) the disk address of the required root page.

In case (1), the server node transmits a module_moved message back
to the requesting node. This message provides the requesting node
with a forwarding address for the module.

In case (2), the supplied page number field of the supply_root_page
message is used to inform the requesting node of the current name for
the module. The page number used in the request is returned in the
requested page number field. Since the owner node has the mapping
between the module and current name at hand, it does not use the
send_page message to supply the page even if the XPT indicates that
another node has a copy of the page. Rather, subject to the coherency
issues discussed in section 5.3, the owner node always supplies the
root page for moved modules under the FAST scheme, if necessary
after retrieving an up-to-date copy from an importing node,

6.2.3.2 The Open Page Fault Handler Algorithm Using the FAST

The full sequence of steps taken by the page fault handler to determine
where the root page of a module is located during an open operation is:

(1) compare the node number/volume number from the module
capability advisory field, or that embedded in the original
module number if the advisory field is empty, with the
equivalent field in the LMT. If a matching entry is found, this
means that the volume that probably contains the page is locally

-126 -

mounted, and the page fault may be resolved locally. If the
appropriate LMT entry does not exist, then

(2) compare the node number/volume number with the equivalent
field in the FMT. If a matching entry is found, transmit a
request_root_page message to the node indicated in the FMT,
with any module capability advisory information included in the
storage volume number field of the message. If the appropriate
FMT entry does not exist, then

(3) assume that the volume containing the page is still mounted on
the creating node, and transmit a request_root_page message
to the creating node indicated in the faulting address, with any
module capability advisory information included in the storage
volume number field of the message, then

(4) if the result of the read attempt is a forwarding address, go back
to step (1).

When the root page is successfully received in a supply_root_page
message, the advisory field of the module capability used to open the
module is corrected if necessary to reflect the true location of the
module. A difference between the supplied page number and requested
page number fields of the message indicates that

(1) the current name for the module differs from the original
module name, and

(2) the module name embedded in the supplied page number field
is an alias for the module. This alias contains current location
information for the module.

If the supplied and requested page numbers are the same, this means
that the module has not been moved from its original volume, and the
current and original module names are also the same. As the MCS is
built, the current name is used within the root segment capabilities for
the moved module, meaning that the process may directly access the
pages of the module whilst it keeps the module open.

-127 -

6.2.3.3 The General Page Fault Handler Algorithm Using the FAST

The full sequence of steps taken by the page fault handler to determine
where a page is located is

(1) compare the node number/volume number with the equivalent
field in the LMT. If a matching entry is found, this means that
the volume that contains the page is locally mounted, and the
page fault may be resolved locally. If the appropriate LMT entry
does not exist, then

(2) compare the node number/volume with the equivalent field in
the FMT. If a matching entry is found, transmit a request_page
message to the node indicated in the FMT. If the appropriate
FMT entry does not exist, then

(3) assume that the volume containing the page is still mounted on
the creating node, and transmit a request_page message to the
creating node indicated in the faulting address.

By taking these steps the kernel is able to determine the location of
pages for any module stored on a mounted volume. It should be noted
that this sequence of steps is exactly the same for a moved or non-
moved module, meaning that the use of the FAST technique has greatly
simplified access to pages compared to the use of the MOT.,

6.3 Conclusion

The described schemes can handle movements of volumes between
nodes and modules between volumes in the MONADS DSM in a manner
that is completely transparent to users. This transparency is achieved
even though the location information embedded in virtual addresses is
used to obtain pages of the virtual address space. As a result the module
capability provided to the owner of a module when it was created, and
any copies of the capability subsequently distributed to other users
continue to enable access to such a moved module. Such movement
may involve relocation of the entire volume on which the module is
stored, or transfer of the individual module between volumes.

-128-

The scheme is able to transparently handle the movement of individual
modules provided that forwarding addresses remain on mounted disks.
With fixed disks, this will normally be the case. However, if the
forwarding address is on an unmounted disk, or if the forwarding
address information has been deleted, the forwarding address
mechanism fails. The inclusion of an advisory field in module
capabilities allows the location of moved modules without the need to
rely on forwarding addresses, provided that the advisory field
information is current. Such advisory information is readily available
when a process first accesses the module because this first access must
be accompanied by the module capability. Any subsequent access of the
module is not accompanied by the module capability, meaning that the
advisory information is not readily available to allow resolution of a
possible page fault caused by such access. Two solutions to this problem
are presented, the first making advisory information available for use in
resolution of every page fault. This solution is inefficient because the
advisory information must be checked as part of the resolution of every
page fault, even those for which it is not needed. The second more
efficient solution allows a moved module to, in a logical sense, adopt
the identity of a module that had been created on its current storage
volume. This change of identity allows the system to access the module
pages using addresses that describe its current location whilst still
allowing processes to open the module using its original name.

The MONADS DSM architecture assigns every module a unique and
permanent name that includes location information for the module.
The significance of the techniques presented in this chapter is that,
despite the fact that this location information is essential for accessing
the module, the module and/or the volume on which it resides can be
moved without making the module inaccessible.

-120-

Chapter 7 STABILITY OF THE DISTRIBUTED SHARED MEMORY

7.0 Introduction

When a computer system shuts down unexpectedly due to hardware or
software failure the contents of volatile memory or RAM is typically lost,
whereas data stored in non-volatile memory such as disk or tape usually
remains available on system restart. Since writing to RAM is much
faster than writing to disk or tape, processors typically modify data in
RAM. A more permanent copy of such data may be obtained by regularly
copying it to disk. This is achieved at the user level by the user issuing
a command such as save with a filename parameter, or at the system
level by the system regularly calling a utility such as sync [123]. The
result of an unexpected system shut down is the loss of modifications
made to the data since it was last saved to disk.

As explained in chapter 3, the MONADS DSM provides a persistent
store. This means that the storage and retrieval of both data and its
interrelationships occurs in a uniform manner that is totally unrelated
to the lifetime of the data. Uniformity of storage and retrieval of data is
achieved by hiding the separation between disk and RAM storage, thus
providing a flat virtual memory space. The transfer of pages of data
between the disk store and RAM, and indeed between nodes in the
network, is controlled by the MONADS system in a manner transparent
to the user.

All data in the MONADS DSM resides in the persistent store, including
the data used by the system itself. At any instance in time the version of
such data held in RAM may differ from the version stored on disk. For
example, system data held in RAM at a node typically includes parts of
the address space page tables. Such data constantly changes with
normal system operation, and must correctly reflect the system state as
seen by the node. User data moving between RAM and disk may include
segments that have not yet been saved to disk, and modified copies of
pages of segments containing pointers into other segments.

At any time the true picture of the state of the store is a combination of
the contents of the virtual pages held in RAM and the contents of disk

-130-

pages. Thus it is crucial to effective system management that the
integrity of the store be guaranteed, particularly after an occurrence
such as a system crash or a hardware failure. A store is deemed to have
such integrity if, following a failurel, it always reverts to a consistent
state that existed prior to the failure. Such a store is said to exhibit
stability.

File-based systems use utilities such as fsck [111] to restore file system
integrity after an unexpected system shut down. The possible resultant
loss of files, whilst potentially annoying to the user, is usually not
critical to the system because such files are independent entities. The
MONADS persistent store, on the other hand, contains all data
including system management information and arbitrary cross
references between data segments. Inconsistencies in such data are
critical to system integrity and security, and can lead to problems such
as incorrect volume page tables and dangling references to lost
segments. These problems may well compromise the integrity of the
store. In this sense the problem of failure recovery within a persistent
store is closely related to recovery in database systems [7].

In this chapter, which expands on work published by the author [54,
101], we discuss, in section 7.1, the topic of stability in general. We
then, in sections 7.2 and 7.3, show how to modify the single node
MONADS architecture so that the store exhibits stability. Lastly, in
sections 7.4, 7.5, and 7.6 we extend this stable single node
architecture to produce a stable DSM.

7.1 Stability and Shadow Paging

A number of proposals for stable stores have already appeared in the
literature. Many of these are based on a scheme proposed by Lorie [76].
Lorie's proposal was oriented towards recovery in database systems,
and presented a new technique called shadow paging. The technique
steps the database from one stable state to the next using a process
called checkpointing. Between checkpoints, two versions of modified
pages of the database are maintained:

1 we exclude here the question of total media failure, which is a separate issue best

handled by a backup or dumping strategy.

-131-

e the version of the page at the last checkpoint. This version is
called the shadow page, and

e the current page, which is the shadow page plus all
modifications made since the last checkpoint.

At each checkpoint, the current pages are written to disk and become
the shadow pages, and the previous shadow pages are reclaimed as free
disk pages. If a system failure occurs, the system reverts to the state at
the last checkpoint. This state is represented by the set of unmodified
pages plus the set of shadow pages.

Shadow paging has been used in a number of subsequent stable store
designs. Traiger [118] and later Thatte [117] proposed that hardware
support for shadow paging would result in a simpler implementation
and a more efficient system. Shadow paging has been used with
memory mapped files in the implementation of several stable stores.
For example VAX/VMS memory mapped files were used by Ross [104]
and SunOS 4 memory mapped files were used by Brown [21]. The
MONADS stable store is also based on shadow paging [54, 101].

A number of techniques have been developed for achieving stability,
particularly in the context of database systems. Some of these used
shadow paging [21, 76, 104, 117, 118], and others were based on non-
paged object mappings [10, 12, 22, 53]. Whilst such methods of
achieving stability differ, the techniques have two basic features in
common. These common features are:

(1) the ability to perform an atomic update operation, and

(2) the ability to separately identify the old data and the new data
prior to the checkpoint operation.

In sections 7.2 and 7.3 we describe how these features are
implemented in the single node stable MONADS store.

-132 -

7.2 Atomic Update

The achievement of stability in a persistent store requires that, as the
last stage of the checkpoint operation, the store moves from the
previous consistent state to the next as an atomic operation. This
means that the transition between stable states is conceptually a single
step which is either taken or not taken, and that it is impossible for the
system to be left part-way through the transition. The atomic operation
that completes a checkpoint is analogous to the commit operation for
database updates [34].

To achieve this atomic update of the state of the store, we use Challis'
algorithm [25]. Our use of this algorithm requires that we maintain
information about the state of the persistent store. In describing our
use of Challis' algorithm we describe the store state information in a
conceptual sense. As a result, we have ignored efficiency. In section 7.3
we describe how efficiency is achieved by avoiding unnecessary
duplication.

7.2.1 Challis' Algorithm

Challis' algorithm provides a means for achieving the effect of an atomic
write operation to a disk block. This is a significant achievement
because writing of a block of data to a disk is typically implemented as a
sequence of bit storage operations.

The key to the algorithm is the existence of a time stamp as the first
and last words of the block. These time stamps are re-written every
time a block is stored on disk, and are used to determine the
correctness or otherwise of the block when reading data from it. When
a block is stored on disk, the same value is written to both the time
stamp words for the block.

Challis' rules for determining the correctness of a disk block are:

(1) If the time stamps are identical, then the last store operation on
the block completed successfully. In this case the data stored on
the block probably correctly reflects what was written to it.

-133-

(2) If the time stamps are different, then the last store operation on
the block was interrupted, and did not complete successfully. In
this case the data stored on the block is assumed to be corrupt.

Our use of Challis' algorithm allows the transition from the last stable
system state to the next to occur as an atomic operation. Its use makes
the following assumptions.

(1) There exists a mapping table from virtual persistent store
addresses to physical disk addresses. Such an address map is
required in systems where the virtual address space is not
mapped in 1-to-1 correspondence with the physical address
space. In systems such as MONADS in which data is sparsely
distributed throughout the virtual address space, this mapping
table is called the disk page table. The disk page table allows
efficient utilisation of disk space because disk pages are not
allocated to unused virtual pages.

(2) On system start up and after each stabilise operation a new copy
of the mapping table and the data is made. Subsequent updates
to the data are made to these copies, meaning that the data as it
existed at the last stabilise operation (the shadow data) is never
overwritten?,

Two root blocks, with their integrity guaranteed by the use of Challis'
algorithm, are stored at well known disk addresses. The most recent
correct root block contains information that allows the mapping table
for the last stabilised state to be found. The two root blocks usually
record the locations of the mapping table for the two previous
stabilised states of the system. It should be noted, however, that only
the most recent version of the mapping table exists because, as part of
a successful stabilise operation, the disk space allocated to the previous
stable state is returned to the free disk space pool.

2 This copy operation is very expensive in terms of the time taken to perform the copy
and the disk space needed for the storage of the copies. The existence of two completely
separate copies of the data allows the model to be more easily understood. In fact the two

separate copies exist in a virtual sense only, as explained in the implementation section.

-134 -

If a crash occurs during the writing of a root block then the write is
incomplete and the information stored in the block is potentially
incorrect. In this case only one of the root blocks records a previous
stabilised state of the system, a condition which continues until the
next successful stabilise operation.

A version number is written as the first and last word of each root
block. This version number is used for two purposes

(1) to enable the system to determine which of the root blocks
points to the mapping table for the most recent stable system
state, and

(2) to enable the system to determine whether the root block was
written correctly. The version numbers for a correct root block
are the same. If the writing of a root block is interrupted by a
system failure, the version numbers at the start and end of the
block are different and the block is incorrect.

The use of Challis' algorithm is illustrated in figures 7.1 and 7.2. Figure
7.1 shows the system state prior to the n+1th stabilise operation. Root
block O points to the mapping data for the n-1th stable state3, and root
block 1 points to the mapping data for the nth stable state. Neither root
block points to the most recent, but at present unstable system state,
n+1.

The atomic update operation entails overwriting the root block with
the oldest version number, in this case block 0 with version number n-
1, with the new version number n+l and a pointer to the newest
mapping table. The disk space occupied by the old stabilised state n
may now be reused, as shown in figure 7.2.

3 The disk pages that stored this state were returned to the free disk space pool as part of
the nth stabilise operation, so that the pointer contained in this block is in fact
meaningless.

-135-

State n - 1

n-1 n-1

Root Block 0

State n

Mapping Table

: n ¥

Data

Root Block 1

State n + 1

NS 5

Mapping Table

v

Data

e

Figure 7.1 The State of the System Prior to the n+1th Stabilise Operation.

On system startup or on reversion to the previous stable state following
a failure, the root blocks are inspected. If the version numbers for each
root block are consistent then the most up-to-date version of the
system is that pointed to by the root block with the highest version
number. If the version numbers for a root block are inconsistent then
this can only apply to one of the blocks at any time unless some
catastrophic failure such as a partial head crash has occurred, in which
case the integrity of the system data itself must be doubtful. Given that
such catastrophes do not occur frequently, the usual case is that either
one or both of the root blocks are correct. Subject to the discussion
above, it is not possible for both the root blocks to be incorrect because
the algorithm involves rewriting the incorrect root block or the least

-138-

recent correct root block to complete a stabilise operation. A single
correct root block will never be overwritten as part of the algorithm.

State n - 1

State n

Root Block 1

State n + 1

e —————

Mapping Table

n+1 n+1 v

Data

Root Block 0

Figure 7.2 The State of the System after the n+1*h Stabilise Operation.

7.2.2 Challis' Algorithm and the Single Node MONADS Store

As described in section 4.3, the MONADS virtual store is paged. Virtual
pages are copied into main memory to resolve page faults, and are
discarded from main memory as required to free up main memory
space. Pages that have been modified are written back to disk as part of
the page discard operation whilst unmodified pages may be safely
discarded without writing to disk. The essence of the shadow paging
technique [76] is that when a modified page is written back to disk

-137 -

from main memory it is never written back to the place it was first read
from after the previous stabilise operation. This means that the version
of the page at the last stabilise operation, the shadow page, is not
overwritten as part of page discard.

The disk locations of the pages in a module are stored in the page table
for the address space in which the module resides. The address space
page table exists in the virtual memory of the address space itself with
the root of the page table being in page zero of the address space. The
disk locations of page zero for every address space stored on a volume
are stored in the volume directory. This volume directory, together
with the free space map for the volume, is stored in address space zero
of the volume (see section 4.3.2). Page zero of address space zero is the
root of the page table for the volume directory address space itself, and
is thus also the root of the page table for all pages stored on the volume.
By allocating two disk pages for page zero of address space zero it is
possible, then, to implement Challis' algorithm to achieve atomic
update of state information for MONADS volumes.

In the following section we describe how old and new data are
identified prior to a stabilise operation, and how the atomic update is
used to complete the transition between stable states.

7.3 Shadow Paging and the Single Node MONADS Store

The description of our use of Challis' algorithm in section 7.2 requires
that all data be copied prior to commencement of processing following
a stabilise operation or system startup. The original data is retained as
shadow data, and modifications are made to the copy or current version
of the data. Each stabilise operation involves an atomic operation in
which the current version becomes the shadow data, the disk space
allocated to the old shadow data is released, and a new copy of the data
is created for future processing. This operation is inefficient because of
the requirement that all data be copied in preparation for potential
subsequent modification. In fact it is only necessary to duplicate data
when the intention to modify it becomes apparent. Much data remains
unchanged between stabilise operations, and need not be duplicated.

-138-

Since the unit of data transfer between main memory and disk is the
virtual page, the single node MONADS implementation of shadowing
applies to the MONADS virtual page. Such an implementation has the
following requirements

(1) The maintenance of a shadow list indicating the virtual memory
pages for which a corresponding current version page has been
allocated on disk. This list is transient, and is not part of the
virtual address space.

(2) That the disk page table and the disk free space list is
maintained in virtual memory so that they are shadowed, and so
that meodifications to them occur in corresponding current
version pages.

(3) The ability to mark a main memory copy of a virtual page as
read-only or read/write, and the ability to generate a write fault
if an attempt is made to write to a read-only page.

(4) The ability to detect whether a main memory copy of a virtual
memory page has been modified, meaning that at least one byte
in the page has been written to since the page was brought into
main memory.

Requirements (2), (3), and (4) are already satisfied by the MONADS
architecture, as described in chapter 4. To satisfy requirement (1) we
create a new table, the Shadowed Pages Table (SPT), which is
maintained by the kernel. A separate SPT is maintained for each
mounted volume.

7.3.1 The Shadowed Pages Table

Our implementation of shadow paging provides for at most one shadow
page for any virtual memory page. If a process wishes to modify a virtual
page, the kernel must determine whether the page has been shadowed
since the last stabilise operation on the volume containing the page. If
the virtual page has been shadowed, then a current version disk page
has been allocated to it. If a shadow page does not exist, then a current
version disk page is allocated and the old disk page becomes the

-139-

shadow page. Otherwise the existing shadow and current version pages
suffice.

The Shadowed Pages Table is a transient table containing an entry for
each virtual memory page that has been modified since the last stabilise
operation on the corresponding volume. This table is checked every
time the kernel detects that a process wishes to write to a read-only
page. If an entry already exists for the page, then write access may be
granted immediately. If an entry does not exist, then the page has not
been shadowed, meaning that a current version disk page has not been
allocated to the virtual page. It is necessary to allocate the current
version disk page for a virtual page prior to the first modification to
ensure that sufficient disk space is available to enable the writing of the
modified page to disk. If free disk space is not available, the system
stabilises the volume, thus freeing up pages allocated to shadow pages
for the volume. If stabilising the volume does not result in free disk
space, the volume is full, and an exception condition occurs.

The SPT is necessary because, although the ATU can detect an
attempted write and does indicate modified pages, it only contains
entries for virtual pages currently in main memory. Consider a virtual
page which is modified and then discarded to disk. In this case a
current version disk page will be allocated, and the discarded virtual
page is written to this disk page. At a later stage the same virtual page
may be brought back into main memory and again modified. The SPT
will indicate in this case that a current version disk page has already
been allocated. As a result

(1) a new current version disk page is not allocated to the virtual
page, and

(2) the virtual page is read into main memory from the existing
current version disk page and not from the shadow page,

(3) the page is mapped into the ATU with read/write access.

We will see later that the SPT is also required to manage the release of
disk space used by shadow pages which are part of the previous
checkpoint, At this stage we will consider the SPT to be a linear table,
but will later look at alternative implementations (see section 7.3.5).

- 140 -

The SPT for a volume contains two values for each entry. These are the
disk address at the last checkpoint for the corresponding page, called
the old disk address*, and the disk address to which the page will be
written on page discard or at the next checkpoint, called the new disk
address.

7.3.2 Read-only and Read/write Pages

On a write access to a read-only page an exception, called a write-fault,
occurs. This is used to detect the first occasion on which a page is
modified. This should not be confused with the modify bit in each entry
of the ATU which indicates whether the corresponding page has been
modified since it was brought into memory. The distinction is
important for a situation where a page is marked as read/write
immediately on being brought into the main memory, in which case the
modify bit indicates if the page has been changed. This is used by the
page fault handler to determine whether a discarded page needs to be
copied to disk.

7.3.3 Management of Disk Pages

As described in section 4.3.2, the root page of a volume is effectively
the root of a tree of disk addresses of pages on the volume. From the
root page the disk address of any given page on that volume can be
located. Following a checkpoint every page on the volume will either be
in that tree or in the free space bit map, which itself is in a page
described by that tree. The key to implementing stability is to leave
that tree undisturbed and to incrementally construct a new tree. This
new tree can be pointed to by the in-memory copy of the root page,
leaving the disk copy of the page pointing at the checkpoint version.
Provided that none of the checkpoint pages is modified then, following
a system crash, the system will return to the last checkpointed state
without any processing being required. The new state described by the
in-memory root page can be made the checkpointed state by a single
disk write of the root page. In order to ensure that this write is atomic

4 This is in fact the disk address of the shadow page.

-141 -

two root pages are maintained and Challis' algorithm, described earlier,
is employed. Both of the root pages are placed at well known disk
addresses so that they may be located at system start-up.

7.3.4 Operations on the Stable Store

There are six operations on the shadow paged single node store that
concern us. They are:

(1)

(2)

Create a new page. To create a new page a new disk block is
allocated using the volume free space bit map. If there are no
free blocks then a stabilise must be initiated5. An entry for this
page, containing a null old disk address (since this is a new
page, no shadow page exists) and the new disk address, is
added to the SPT. The new disk address is inserted into the
MMT entry and the page table entry for the page is updated. If
this is page zero of an address space then an entry is added to
the volume hash table.

Modify a page in main memory. The effect of modifying a page in
main memory depends on the read-only bit for the
corresponding entry in the ATU. If the page is marked as
read/write then the modify bit in the ATU is set and the access
proceeds, otherwise a write fault exception occurs. In this latter
case the original disk address of the faulting page is obtained
from the MMT. A new disk block is allocated using the free
space bit map. If there are no free blocks then a stabilise must
be initiated. An entry for the page containing the original disk
address (the shadow page) and the new disk address (the
current version page) is added to the SPT. The MMT is updated
with the new disk address and the page table entry for the page

5 Given the page table structure it is possible for the page fault handler to statically

calculate the maximum number of pages which may be modified as a result of processing

a write fault and to ensure that there is sufficient disk space for each of these pages before

granting write access to the page. This number of pages never exceeds five in the
MONADS scheme (see section 4.3.2).

-142 -

(3)

(4)

is updated. If this is page zero of an address space the hash table
is updated with the new disk address.

Page fault. On a page fault the disk address of the required page
is obtained from the disk page table and the page is read into a
free page frame. This may involve resolving further page faults
The disk address is looked up in the new address column of the
SPT. If it is found then the page has already been shadowed, and
thus it may be mapped into the ATU as read-write, otherwise it
is mapped in as read-only. In either case an entry containing the
disk address of the page is added to the MMT.

Page discard. On a page discard, that is when a page is removed
from memory, if the modify bit for the corresponding entry in
the ATU is set then the page is written to the disk address
indicated in the MMT. Note that if the page has been modified
rules (1), (2) and (3) will guarantee that a new disk block has
already been allocated.

Stabilise a volume. A stabilise operation for a volume may either
be automatically generated (for example to free up disk space on
the volume) or explicitly requested by a user/program. In either
case the following must be performed. For each entry in the
SPT the old disk (or shadow page) address is extracted and the
corresponding bit in the free space bit map is set, marking the
disk pages as free. The free space bit map is locked into main
memory so that this access cannot cause a page fault. All pages
for this volume which are in main memory and which have been
modified are copied back to disk. These can be easily located
using the MMT and the ATU®. The pages are then marked as
read-only in the ATU so that, if they are subsequently modified,
a new current version disk page will be allocated. Finally the
root page for the volume is atomically written back to disk. This

6 Note that the order in which these are written to disk is not important since if there was
to be a system crash, the old state described by the old root page on disk would be restored
and thus all of the current version disk pages allocated as part of the new state would be

in the old free space bit map.

-143-

final step makes the new state the stable state. At this point the
SPT is cleared and the checkpoint operation is complete.

(6) Restore the persistent store. A restore operation takes place
following a crash of a volume. Since the entire state as at the last
checkpoint still exists on secondary storage, and all disk pages
used since that checkpoint will still be in the free list of that
checkpoint state, no modification to the secondary store needs
to be performed in order to restore to the last checkpoint. The
SPT for the volume is cleared and any pages from that volume in
main memory must be removed from the ATU. The root page
from the last checkpoint is then retrieved and system operation
may continue.

7.3.5 Implementation of the Shadowed Pages Table

We now return to the question of implementation of the SPT. There are
three operations which must be performed on the SPT. These are:

(1) insert a new entry,

(2) check if an entry with a particular new disk address is in the
table, and

(3) cycle through each entry in the table.

We can suggest two alternative implementations. The first is a hash
table, using selected bits of the current version disk address as the
hash key. This would provide good performance on all of the required
operations. However, the size of the hash table is a potential problem
since, in theory, it can grow quite large, with entries for half the
number of disk pages on the volume. However, in practice this is not
likely to be a problem since it is sensible to checkpoint frequently,
meaning that many less than half the number of pages on the disk
would be shadowed between checkpoints. In any case, if the hash table
became full a checkpoint could be forced. Since a checkpoint can be
performed at any time it is possible for the system to enforce a policy
on checkpoints to avoid this situation, for example checkpoint after n
pages have been modified.

-144 -

An alternative implementation of the SPT is to use two bit lists, both of
which have one bit for each disk page on the volume. For the maximum
size MONADS volume of 256 megabytes, this is only 8 kilobytes each
(see section 4.3.2), which it is feasible to lock into main memory. The
bit lists effectively correspond to the two columns of the SPT, the first
indicating whether the corresponding disk page currently stores a
shadow page, and the second indicating whether the corresponding
disk page is allocated to a current version page. This allows the three
required operations to be performed efficiently and in a fixed amount of
store. In fact these bit lists operate in a similar manner to Lorie's MAP
and shadow bits [76], but have the advantage that, since they are not
distributed throughout the page tables, they may easily be cleared
following a stabilise operation.

7.3.6 Multi-volume Stabilise

As described in section 4.4.1, MONADS segments are grouped together
into information-hiding modules, each of which resides in a unique
address space. Each MONADS process is represented by a stack
address space (see section 5.4). Segments within a stack address space
may contain pointers into other address spaces, including address
spaces stored on other volumes. Such pointers constitute cross
references between volumes, and independent checkpointing when
these exist could result in inconsistencies following a crash. A crash
could, for instance, result in a capability pointing to a non-existent
segment. To cater for between volume references, we provide a multi-
volume stabilise mechanism, implemented as a two phase commit.

Two copies of the root page for each of the dependent volumes are
maintained as before, and one of the volumes, presumably on a fixed
disk, is designated the master volume. The master volume records
which root page is used for each of the dependent volumes, Each
dependent volume is stabilised as above, with only the older of the two
root pages being updated with the new timestamp. The master volume
is updated last, with both root pages being written to guarantee that the
write is successful. Following a crash the timestamps can be inspected
to determine the most recent consistent state.

-145 -

A potential disadvantage of this scheme is that the set of dependent
volumes must be stabilised at one time. For a large dependency graph
with many volumes this could become quite expensive since all
processes accessing those volumes must be stopped during the
stabilise. However, the situation is not as bad as it at first seems. Much
of the work takes place in parallel with the normal operation of the
system as part of the page discard task, and at most the entire memory
of the machine, but usually much less, must be copied to disk at a
checkpoint.

This scheme can be generalised to allow for a very flexible stable store
in which volumes are stabilised in groups in such a way that the
groupings may be changed as required. For example, it may be that a
particular volume supports a self-contained related group of users and
their data. In such a case that volume could be stabilised by itself. Given
an appropriate mechanism it would then be possible to group that
volume with another so that the two are stabilised together. As another
example consider bringing a volume from another site and mounting it
on a machine. It may be desirable for it to be stabilised with other
volumes on that machine. This can easily be achieved by the proposed
scheme.

7.3.7 Processes

Processes can be included in such a scheme by saving the current state
of each process, including the contents of screen buffers, etc., before
commencing the checkpoint operation. At restart this state information
can be retrieved and the processes continued. The process state
information could either be saved on the individual process stacks or in
a central object pointed to by the master volume.

7.3.8 Discussion

Persistent systems have the potential to provide a powerful and flexible
software development environment. However, if they are to achieve that
goal they must be both efficient and robust. We have addressed the
former issue by providing a purpose-built architecture specifically
designed to support a large virtual store. This architecture was

-146 -

described in chapter 4. In this chapter we have described a scheme to
make this virtual store stable.

The scheme is based on shadow paging but has the advantage that disk
space allocation is fully dynamic. A minimum of disk space is used. At
any time there are at most two copies of any page on disk, the last
checkpoint version and the current version if the page has been
modified. Following a checkpoint, there is only one copy of each page.
At no time do pages have to be copied, either in memory or on disk.
Following a system crash the system automatically returns to the last
consistent state with no post-processing of the disks. The checkpoint
process can be expensive, but much of the work may be overlapped
with the normal operation of the system.

The scheme gains simplicity through two techniques. The first is the
maintenance of all of the virtual memory tables, free space bit maps,
etc. within the store. This allows the shadowing technique to be used
recursively on the page tables themselves, considerably simplifying the
implementation. The second technique is the use of very large
addresses. This allows the virtual address space to be partitioned to
support multiple volumes, without fragmenting the primary or
secondary store.

The effects of the above scheme on the placement of pages on the disk
warrants consideration. After some period of time the pages of an
address space may be randomly distributed across the disk. This is
acceptable if the pages are to be randomly accessed. However, for
sequential access it would be better if the pages were physically
sequential. This was achieved in Brown's scheme [21] by creating a pre-
copy of pages on disk and overwriting the original page in place,
maintaining the original physical structure of the store. This has two
disadvantages. First, each modified page must be physically copied and
second, the store must be partitioned into two areas, store and shadow
pages, potentially reducing the disk space utilisation. However, it is
desirable to support efficient sequential access.

Lorie [76] has suggested a solution to this problem. The disk, or volume
in our case, is organised into physical clusters. Each cluster consists of
a set of disk blocks such that the head movement time between blocks

- 147 -

in the same cluster is much smaller than the head movement time
between blocks in different clusters. Each address space is associated
'with a cluster and when a new disk page is required for an address
space it is allocated in this cluster, if possible. By careful choice of the
cluster size it should be possible to achieve good locality for sequential
access. Clustering need not be implemented globally, but can be an
option on an address space basis.

In several of the schemes described in the literature [21, 117] there is
a disk space overhead, even following a checkpoint operation. In the
proposed scheme disk space is allocated fully dynamically. There is no
static division of store into shadow and main store and once a stabilise
has taken place all shadow store is immediately released. By
implementing a clustering scheme as described above, this
improvement can be achieved without serious performance degradation
for sequential access.

There is an overhead in terms of both disk space and execution time in
performing the shadow paging algorithm. It is quite likely that for
certain address spaces containing temporary objects stability is of no
importance. In these cases it is desirable to disable the shadowing. The
MONADS scheme can be enhanced to support this option. Each address
space can be flagged as either shadowed or non-shadowed. In the latter
case the page table and red-tape information would still be shadowed,
but not the data. The page table and red-tape information must be
shadowed in order to ensure the integrity of store management data.

An interesting area for further research is the use of an uninterruptable
power supply (UPS). Technology in this area has improved considerably
and it is now quite possible to provide battery backup to ensure
maintenance of power to disks and memory for an extended time, at
least in the order of hours [32]. Given this sort of technology the
question of coping with power failure is no longer an issue. Following a
power failure all data can simply be copied to disk. However, this does
not cope with the situation of a system software failure or, even more
seriously, a hardware failure (e.g. processor error) where the power to
processor and memory must be removed in order to rectify the fault,
These situations will still require another mechanism such as shadow
paging. A future research direction is the investigation of possible

-148-

simplifications and improvements to the proposed mechanism based
on the use of a UPS. In particular it should be possible to considerably
reduce the I/0 overheads by shadowing within main memory.

7.4 Network-wide Stability

In this section we show how the single node stability scheme
presented in sections 7.2 and 7.3 may be extended to achieve stability
of the entire DSM.

Checkpointing a volume in the DSM may involve recovering modified
pages from remote nodes. This introduces the potential problems of
remote node failure and connecting medium failure. In this section we
modify the single node stability scheme to achieve stability of the DSM,
and discuss strategies for recovering from network failures.

Exported read-only pages pose no threat to the stability of the volume
on which they are stored provided such pages have not been modified
since the last checkpoint?. Stability of pages for which the current
version is currently in the main memory of a remote node is not
ensured by the single node stability scheme8. This is because such
pages are not in the physical memory of the owner node at the time of
initiation of a checkpoint operation, and are thus not detected by
simply scanning the ATU for modified pages from the appropriate
volume.

The first stage in ensuring network-wide stability requires the owner
node to send return_page messages to any remote nodes marked in the
XPT as holding the current version of modified pages from the volume
about to be stabilised. As each page is returned it is marked as read-
only in the remote node's ATU in accordance with the coherence
algorithm (see section 5.3). When the page arrives at the owner node, it
is stored in one of the pool of main memory page frames allocated by

7 Recall that a remote modifying node may be instructed to provide a copy of a page to
another remote node, resulting in exported modified read-only copies of the page (see
section 5.3.1.1). In this case the owner node may not have an up-to-date copy of the page.
8 This situation occurs if the page has been modified by the remote node since the last
checkpeint on the volume containing the page.

-149 -

the kernel for receipt of incoming messages. Once the transfer of the
virtual page into main memory is complete, it is mapped into the ATU
as modified read-only and an entry is made for the page in the MMT.
Part of the MMT entry is the disk page to which the virtual page will be
written on checkpoint, so a new disk page must be available for
completion of the entry.

7.4.1 Allocating Disk Space for a Remote Read/write Page

As described in section 7.3, the lack of free disk space on a volume is
one of the reasons for initiation of a checkpoint. It is clearly
unsatisfactory to assume that free disk space will be available for storage
of modified pages returned by remote nodes. The solution is to allocate
the new disk page to an exported read-write page prior to the granting
of read-write access. This is analogous to allocating a disk page on a
write fault for a local page.

When a request_changed_access_rights message is received, the
kernel at the owner node checks the SPT to determine whether the
page has been shadowed since the last checkpoint on the volume
containing the page. If the page has been shadowed, a new disk page
already exists and the read/write access may be granted. If this is the
first write fault for the page since the last checkpoint, a new disk page
must be allocated before read/write access is granted. At the same time

(1) an entry for the page is added to the SPT,

(2) the disk page field of the XPT entry for the page is changed to
indicate the new storage location, and

(3) the new disk page address is entered in the address space page
table as the storage location for the virtual page.

In this way we guarantee that space exists on the disk to save the
virtual page during the next checkpoint.

The single node stability scheme resolves page faults by bringing pages
from disk into main memory with read/write access if an entry for the
page already exists in the SPT. This is not appropriate if the node is

-150-

networked and a copy of the page exists in the physical memory of
another node, because the page coherence algorithm does not allow a
read/write page to appear in the physical memory of multiple nodes
simultaneously. As described in section 5.3.1.1, the XPT is checked
when a page fault occurs as part of the page coherence algorithm. The
method used to resolve the page fault depends on page status
information read from the XPT, as follows.

(1) If a remote current version copy of the page exists, a read-only
copy of the page will be provided by the current version node
indicated in the XPT, thus making disk access at the owner
node unnecessary. If the current version node has read/write
access to the page, this access is reduced to read-only before
the page is transmitted.

(2) If an exported read-only copy exists a read-only copy of the page
is provided by one of the read nodes in the XPT, thus making
disk access at the owner node unnecessary.

(3) If the page fault is remote, and no exported copies of the page
exist (indicated by the lack of an XPT entry for the page), a
read-only copy of the page is provided by the owner node. This
implies that, at the time of provision, the owner node has a copy
of the page in its main memory.

In each of these cases the page is mapped into the ATU of the
requesting node as read-only in accordance with the coherence
algorithm.

If the page fault is at the owner node, and no entry for the page exists
in the owner node's XPT, then the page is brought into main memory
from local disk. Since the owner's XPT has no entry for the page, it is
not in the memory of any other node in the network, and so it can be
safely mapped into the ATU with read-only or read/write access
depending on the corresponding SPT entry (according to the rules
defined in section 7.3.4).

The page coherence algorithm (see section 5.3) does not allow a
read/write page to appear in the physical memory of multiple nodes

-151 -

simultaneously. Thus no MMT?® entry can exist at the owner node for an
exported read/write page. When such an exported page is returned to
its owner node, the page must be entered into the MMT, which
involves knowledge of the corresponding disk page number. The disk
page number for exported pages is stored in the XPT, which is held in
locked-down memory in the kernel of the system (see section 5.3.1).

The use of return_page messages and the allocation of a new disk page
prior to granting of remote read/write access allows correct operation
of checkpointing across the network with little change to the single
node stability scheme provided that modified versions of pages are
always available at the time of a checkpoint operation. In the following
section we discuss the problem of checkpointing when such a page is
not available.

7.5 System Failure

A modified page may not be available at the time of a checkpoint
operation because of either

(1) the failure of an importing node, or
(2) the failure of an exporting node, or
(3) the failure of the interconnecting media.

In the following sections we examine each of these cases separately.

7.5.1 Failure of an Importing Node

As described in section 7.4, the volume checkpoint operation results in
the owner node requesting the return of all exported modified pages. If
an importing current version node fails, it obviously cannot respond to
such a request. It is clear that any modifications to pages stored in the
physical memory of a node are lost if the node fails, so examination of

9 As explained in section 4.3 the MMT describes, for each main memory page frame, the
disk storage location for the frame, that the frame contains an imported page, or that the

frame is unoccupied.

-152 -

importing node failure reduces to analysis of the behaviour of the
exporting node. In our analysis we presume, for simplicity, that a single
page has been imported and modified by the failed node. If multiple
pages are affected, the described single-page scheme may be applied to
each page individually.

After several attempts to retrieve the page the exporting node
concludes that the importing node has failed, and that modifications to
the exported page are lost. It is tempting to simply

(a) remove the SPT entry for the page,

(b) appropriately modify the volume and address space red-tape
information thus making the shadow page the current page and
returning the previously allocated new disk page to the volume
free list, and then

(c) continue the checkpoint operation as if the lost page had never
been exported or modified.

This proposition is unsatisfactory if the following sequence of events
relating to virtual pages X and Y occurs after the most recent
checkpoint operation:

(1) pages X and Y are transferred to a remote node with read-write
access.

(2) a segment is created in page Y, and pointed to by a segment
capability in page X.

(3) as part of the normal page discard process on the importing
node, page X is returned to the owner node.

(4) the importing node fails, and subsequent to that the owner node
attempts to stabilise the volume containing pages X and Y.

If the above sequence of events were to occur, and the stabilise
proceeded without the inclusion of the modified version of page Y, then
page X would continue to contain a reference to the now non-existent
segment that had been created in page Y. The problem is potentially
extremely serious from a security point of view because a new segment

-153 -

may subsequently be created in the same location in page Y as that
pointed to by the segment capability in page X. This would allow access
to a segment in violation of the capability protection scheme that is
designed to protect it.

In order to maintain full consistency and security it is essential that
only a consistent set of pages be saved at the time of a checkpoint. If
this is not possible because a node containing a page from the volume
does not respond, then the volume cannot be stabilised at that time.
The four available options are to:

(1) stabilise without including the unavailable page, or
(2) not stabilise at this time, or

(3) delay the stabilise until the non-responding node returns the
necessary page, or

(4) revert to the previous checkpoint state.

Option (1) can only be allowed if it can be determined that excluding
the missing page would not result in a dangling reference. This means
that it is necessary to ascertain that the missing page contains no
reachable segments that do not also exist in the shadow page. Such a
determination can only be made by computing the transitive closure for
the volume being stabilised. In general, this would be prohibitively
expensive, because all pointers must be followed to ensure that they
refer to existing segments.

Option (2) may not always be possible because the stabilise may be
essential before system operation can proceed. This may be necessary if

(a) the stabilise operation was instigated because of lack of disk
space, or

(b) the stabilise was required as part of the implementation of a
higher level transaction mechanism.

Option (3) must be subject to time-out since operation of the owner
node on the volume cannot proceed until the stabilise operation has
completed, and the remote node may be unavailable for an extended

-154 -

period. This option has the advantage that it allows for temporary and
easily rectifiable problems such as the breaking of the network to insert
an extra node.

We propose that option (3) be implemented with a parameterised time-
out period. If the time-out is reached the system concludes that the
stabilise cannot take place and option (4) occurs. This means that after
the time-out the volume reverts to its last checkpoint state. Reverting
to the last checkpoint state involves instructing all contactable nodes
with pages from the volume to invalidate these pages. The importing
nodes can be easily identified by reference to the XPT. In addition,
pages from the volume in the memory of the owner node must also be
invalidated, these pages being identified via the MMT.

The reversion to the last checkpoint state may not be as serious as it at
first seems. It is expected that there will be a higher level transaction
mechanism for controlling concurrency and serialisability. Such a
mechanism could well provide a transaction log on a separate
independently stabilised volume to allow a roll forward from the
reverted state, thus recovering at least some of the lost modifications to
the volume. Initial work on such a mechanism is described in [20].

7.5.2 Failure of an Exporting Node

If an exporting node fails, it will restart at its last stable state, with any
local modifications performed since that checkpoint being lost. It is
interesting to consider the fate of a read-write page, X, exported by the
failed node since the last checkpoint. Attempts by the importing node
to page out X are unsuccessful, and X is effectively trapped in the
physical memory of the importing node. Such a situation would be
detrimental to performance at the importing node because its available
physical memory would be reduced by the page size for each trapped
page, this situation being potentially critical for a diskless node.

A solution is to use up/down protocol messages to periodically monitor
the status of the owner of imported read/write pages. If the owner of
page X is found to be non-responding, page X is immediately marked as
read-only, thus preventing further modifications, and an attempt is
made to return a copy of the page to its owner. If the attempted return

=155

fails, the page is invalidated, thus losing any modifications to the page
in exactly the same way that post-checkpoint modifications at the
owner node are lost following a crash. In a similar fashion, on the
detected failure of an exporting node, all read-only pages from that
node are invalidated.

If an exporting node suffers a system failure, it will subsequently be
restarted at its last checkpoint state. It is possible that other nodes
have pages from volumes on the restarted node in their memory.
Regardless of whether these pages are read-only or read/write, they
may not be consistent with the checkpoint state to which the owner
node has reverted. It is therefore imperative that any pages previously
exported by the restarted node be invalidated at remote nodes. As
described in the previous paragraph this will happen automatically if an
importing node detects the exporting node's failure. However a short-
term crash may not be detected because the importing node may not
attempt to communicate with the crashed node while it is down.

The solution is to link the stability scheme to the up/down protocol
described in section 5.2.3. When a node restarts, it broadcasts a
here_i_am message informing all other nodes that it is back on-line.
When the kernel at a remote node receives such a message, it checks
its IPT, and invalidates all pages previously imported from the newly
on-line node. Once any such pages have been invalidated, each remote
node returns a here_i_am_too message informing its existence, and
the node names are stored by the restarted node in its Network
Addresses Table (NAT, see section 5.2.3). Any request for provision of a
page to a remote node is refused if that node does not appear in the
local NAT and the requesting node is again instructed to invalidate all
pages imported from the node by the transmission of a here_i_am
message. The receipt of an for this instruction results in the
requesting node being inserted into the table. We thus guarantee that
all inconsistent versions of pages will eventually be invalidated.

7.5.3 Failure of the Interconnecting Media

The effect of failure of the interconnecting media is the same as the
failure of an exporting or importing node in that pages cannot be

-156-

transferred between the nodes. The timeout described in section 7.5.1
will handle the situation of a media interruption of duration less than
the time-out period. A longer term media problem is equivalent to a
node failure, and is handled using the techniques described in sections
7.5.1 and 7.5.2. To ensure that exported pages are invalidated after a
long media failure, a node removes the NAT entry for any remote node
whose response to an invalidate_page message is not received within
the time-out period. Any subsequent request from such a remote node
receives a here_i_am message in reply as described in section 7.5.2.

There must be flexibility in the setting of the time-out periods to allow
for different physical network implementations and for fluctuations in
network traffic. It would also be sensible to provide a breakout facility
to force a restart before the end of a time-out.

7.6 Multiple Volume Stabilise Across Nodes

As was described in section 7.3.6, it is possible to have cross references
between volumes. These are always held in the form of segment
capabilities stored in stack address spaces. In order to ensure
consistency it is essential that volumes containing cross references are
stabilised together. In a network, these volumes can exist on different
nodes. As part of the control of between-object references, a
dependency graph must be maintained at each node to describe volume
inter-relationships. Various protocols for constructing and maintaining
the dependency graph are being investigated. The problem is
considerably simplified in the MONADS architecture because of the
clear distinction between within-address-space references and
references to other address spaces, potentially on other volumes.

When a volume is stabilised, the dependency graph is consulted, and if
cross references exist, what is essentially a two phase commit is used
to cause all the related volumes to be stabilised together. The stabilise
may involve volumes stored on more than one node. In principle the
multi-volume stabilise described in section 7.3.6 may be utilised across
the network. One of the involved nodes acts as a master, ensuring that
each of the separate volume stabilise operations is completed and then
performing the second phase of the two phase commit. Future work on

- 157 -

this topic involves consideration of issues such as selection of a master
node, and strategies for handling failure of the master node.

7.7 Conclusion

Stability can be achieved for a single node persistent store by the use of
shadow paging. The large virtual memory store can be extended to
encompass a network of nodes, with the physical location of objects
within the network being totally transparent to the user.

By extending the mechanisms used to achieve single node stability, we
can ensure network-wide stability. Such stability is achieved with a
minimum of network traffic overhead, and uses existing memory
coherency protocol messages. In achieving stability, the service offered
to the remote user is equivalent to that offered to local users, in that, at
worst, modifications made since the last checkpoint for a volume on a
failed node are lost.

The proposed scheme guarantees the security of data within the
system. The use of time-out periods means that temporary
interruptions to the physical network media can occur without loss of
data. Where cross references exist between volumes, the volumes may
be stabilised together utilising a two phase commit protocol over the
network. When combined with an appropriate higher level transaction
mechanism, it should be possible to roll forward to recover most
modifications made to a volume between the last checkpoint on the
volume and a system failure.

-158-

Chapter 8 IMPLEMENTATION

8.0 Introduction

The MONADS DSM model described in chapter 5, and the volume and
module movement scheme described in chapter 6 have been
implemented for a network of three MONADS computers. The stability
techniques described in chapter 7 have not yet been implemented. It is
the author's intention to further investigate these techniques as the
subject of future research. In this chapter we describe the structure of
the MONADS kernel, and how the kernel implements the DSM.

8.1 The MONADS Kernel

The MONADS architecture is implemented using a 32 bit micro-
programmed computer called the MONADS-PC [100]. The microcode,
which is described in [119], implements the MONADS-PC instruction
set [97].

The kernel, which sits directly above the MONADS-PC hardware, is
implemented as a set of co-operating processes each of which performs
a specific kernel task. These processes are written in MONADS
assembly language [96]. The kernel code and data is locked down into
main memory, meaning that a page fault cannot occur on access to an
address in the kernel.

The kernel processes have static priority, and are scheduled by a
simple priority-based process scheduler. This scheduler is based on the
automatic scheduler described in [66], and is achieved through the
microcoded implementation of four kernel process scheduling
assembly language instructions. These instructions are

(1) ksusp. This instruction suspends the currently active kernel
process.

(2) kactp(process number). This instruction activates a kernel
process suspended with ksusp.

-159 -

(3)

(4)

ksemp(semaphore name). This instruction implement's
Dijkstra's P operation [41]. It indivisibly decrements the
indicated semaphore's counter, and if necessary suspends the
kernel process.

ksemv(semaphore name). This instruction implements
Dijkstra's V operation [41]. It indivisibly increments the
indicated semaphore's counter, and if necessary causes a
suspended kernel process to be activated.

Each hardware interrupt is individually and statically associated with a
kernel process which acts as an interrupt handler for it. On a hardware
interrupt the microcoded scheduler performs a kactp on the

corresponding process, which it is assumed will be suspended.

Kernel processes belong to one of three categories. Each kernel

process is either

(a)

A Server Process. The sole role of such a process is to service
requests from other processes. A server process has no
associated interrupt, and never directly interacts with hardware
devices.

(b) A Synchronous Device Process. Such a process interacts with

(c)

other kernel processes and with hardware devices. The
interaction with hardware is of a cause and effect nature,
meaning that hardware interrupts are totally predictable and
synchronous with the operation of the process.

An Asynchronous Device Process. Such a process interacts with
other kernel processes and with hardware devices. This
interaction is of an essentially random nature, and it is not
possible to predict whether the next activation of the process
will be to service a hardware (i.e. interrupt) or software request.

Communication between kernel processes is achieved using kernel
message blocks. Every kernel process has an associated queue onto
which these message blocks may be linked. If kernel process A wishes

to request some task of kernel process B, it builds an appropriate

-160-

kernel message block and links it onto process B's message queue. It
then signals the request by either

(1) performing a V operation (using ksemv) on process B's queue
semaphore if process B is a server or synchronous device
process, or

(2) using the kactp assembler instruction if B is an asynchronous
device process.

On completion of the requested task, kernel process B notifies the
requesting process A by

(1) modifying the message block,
(2) linking the message block to process A's message queue, and
(3) notifying process A using either ksemv or kactp as appropriate.

The method of scheduling kernel processes depends on the process
category. With respect to the categories above, scheduling is achieved

by

(a) Semaphores only for server processes.

(b) A combination of hardware interrupts and semaphores for
synchronous device processes.

(c) A combination of hardware interrupts and software interrupts
for asynchronous device processes.

The algorithms for the operation of the three categories of kernel
process are shown in appendix 3.

User processes reside above the kernel, and are scheduled separately
from the kernel processes by a kernel process called the user process
scheduler which is dedicated to that task. User processes see the
kernel as a set of modules with interfaces that provide kernel services.
These services are accessed using module capabilities in exactly the
same way as services offered by user modules. This means that an
operating system built above the kernel may control use of the various

-161 -

features of the kernel by controlling the distribution of the module
capabilities used to access these features. Examples of services offered
by kernel interface modules include terminal input/output and virtual
memory management,

To gain access to a kernel service, a user process calls the appropriate
kernel module interface procedure. The interface procedure

(1) builds an appropriate kernel message block,

(2) links the message block to the appropriate kernel process
queue,

(3) notifies the kernel process using ksemv or kactp, and

(4) requests the user process scheduler to suspend the user
process.

On completion of such a request, the kernel process ascertains
whether the request originated from a kernel or user process. If the
request originated from a user process, the kernel process notifies the
completion by requesting the user process scheduler to reactivate the
user process. If the request originated from a kernel process, it is
notified as described above.

The pre DSM kernel processes and their purpose are described in
section 8.1.1. In section 8.1.2, we describe in overview the
modifications to the kernel structure which support distribution of the
virtual memory. A more detailed description of the implementation of
the DSM then follows.

8.1.1 The Pre DSM MONADS Kernel Processes

In this section we describe the kernel processes as they existed prior
to the implementation of the DSM. The original MONADS kernel
processes were

(a) disk process. This synchronous device process provides disk
oriented functions such as mount, read disk page, and write
disk page.

-162 -

(b)

(c)

(d)

(e)

(f)

(g)

page fault interrupt process. This server process is activated
whenever a user process page fault occurs. It requests the
virtual memory process to load the faulting virtual page into
main memory. If there is already an outstanding request for the
subject virtual page, the page fault interrupt process links this
latest request to the existing one. It then suspends the user
process which caused the page fault and invokes the user
process scheduler.

virtual memory process. This server process manages the use of
main memory, and the movement of virtual memory pages
between disk and the main memory. It maintains the Main
Memory Table (MMT, see section 4.3), and implements page
discard to ensure that main memory page frames are available as
needed.

logon process. This server process allows users to log on to the
computer. It generates a login prompt, waits for user input,
verifies the username, and requests the user process scheduler
to activate the user's process. Terminal input and output is
achieved by making appropriate requests to the terminal
process.

timer process. This asynchronous device process is regularly
activated by an interrupt generated by the clock chip. When
activated it calls the user process scheduler to activate the next
"ready"” user process.

user process scheduler. This server kernel process handles user
processes. As such it can start a user process at login, long
suspend a user process at logout, suspend a user process on a
page fault and activate it again when the fault is resolved,
suspend and activate processes on an event, suspend and
activate processes in general, reschedule processes, and handle
exceptions.

terminal process. This asynchronous device process handles
input and output from terminals. In this role it communicates

-163 -

with the logon process, the terminal interface procedures, and
the serial controller hardware.

(i) idle process. This process is executed when all other kernel
processes are inactive. It executes at the lowest priority level,
and can be used to perform various house-keeping operations.

All kernel processes except for the idle process suspend themselves
waiting until there is some work for them to do. The idle process is
never suspended. It is simply interrupted whenever another process is
scheduled to run.

The kernel maintains heaps of the various kernel message blocks used
for communication between the kernel processes. These message
blocks are

(a) virtual memory message block used in kernel message passing
related to the management of virtual memory pages,

(b) user scheduler message block used in kernel message passing
related to user process management, and

(c) terminal message block used in kernel message passing related
to terminal input/output.

Of these, the format and use of the virtual memory message block is
extended in the implementation of the DSM. The format of the
extended structure is shown in appendix 4.

8.1.2 The DSM MONADS Kernel Processes

The implementation of the MONADS DSM involves modifications to the
virtual memory process and the user process scheduler, and the
creation of a new process to handle communication between the linked
computers. This new process is called the network process. In
overview, the function of each modified kernel process is

(a) virtual memory process. The extended virtual memory process
implements the DSM model by determining whether faulting
pages are local or remote, maintaining the IPT and XPT, and

-164 -

implementing the page coherence protocol. The process also
implements the stability scheme and maintains the SPT as part
of this role.

(b) network process. This process accepts messages for
transmission to remote nodes identified by logical node
numbers, uses its NAT to convert the logical node number to
the corresponding physical node number, encapsulates the
message in a special MONADS packet, and finally transmits it. It
receives and transmits up/down protocol messages and uses
these to maintain the NAT. The network process also receives
MONADS packets, extracts the message from the packet, and
passes the message on to the appropriate local kernel process.

(c) user process scheduler. This process is extended to implement
distributed process synchronisation (see section 5.4). The
extensions allow the process scheduler to handle
activate_process messages received via the network process
from remote nodes. The user process scheduler can also cause
the activation of a remote process by causing the transmission of
an activate_process message to the appropriate remote node.

8.1.3 The Virtual Memory Message Block

Virtual memory message blocks enable kernel processes to exchange
messages related to the management of virtual pages. Since distributed
process synchronisation becomes necessary with the implementation of
DSM, the blocks are also used to convey kernel messages relating to
remote process scheduling. The processes which communicate using
these blocks are the disk process, the page fault interrupt process, the
virtual memory process, the network process, and the user process
scheduler. The structure of the extended virtual memory message
block, together with a full description of each of the fields and the
possible types of message block indicated by the request_type field, are
shown in appendix 4.

-165 -

8.2 The Function of the Network Process

The network process acts as an interface between the local kernel and
the network hardware. As such it shields the rest of the kernel from
knowledge of the particular network being used. A kernel process
wishing to transmit a message on the network simply prepares a virtual
memory message block, links it to the network process request queue,
and informs the network process of this linkage.

The network process itself has little knowledge of the structure of
messages. It handles transmission and receipt of three types of
message

(1) long messages consisting of a complete virtual page and
associated protocol header information,

(2) short messages consisting of a protocol header only, and

(3) up/down protocol messages, which are a special form of short
message.

Since the receipt of messages from other nodes is of an essentially
random nature, the network process is implemented as an
asynchronous device process. It is necessary to provide buffer space for
the receipt and storage of incoming messages, with larger buffers being
required for long messages. The nature of network traffic makes it
impossible to predict whether the next incoming message is long or
short. Because of this, a long message buffer is allocated to every
incoming message. A list of the network messages handled by the
network process is provided in appendix 1.

When a MONADS computer boots, the network process, as part of
network initialisation, requests the provision of a number of main
memory page frames to be used as buffers for the virtual memory page

-166-

part of received long messages!. This is achieved using virtual memory
message blocks with the request_type field set to
get_page_for_network. These page frames, together with smaller
buffers maintained within the network process for the storage of
MONADS message header information, are made available to the
network hardware for the storage of incoming messages in the form of
network receive_requests.

The network process checks the message_type field of the MONADS
header section of every incoming message for the codes here_i_am,
i_am_here_too, or node_going down. These codes indicate that the
message implements the up/down protocol described in section 5.2.3.-
Such messages are short, and do not require the use of a full page
frame. The process automatically makes the page frame associated with
up/down protocol messages available to the network hardware by using
them to build a new receive_request.

The three up/down protocol messages are used by the network process
to maintain the NAT. When a here_i_am message is received, the
virtual memory process is informed using a virtual memory message
block with the request_type field set to node_on_line. The virtual
memory process then makes the necessary changes to the IPT and
XPT, and invalidates pages if required (see section 7.5.2).

All other messages are passed to the appropriate kernel process
unchanged by the network process using a virtual memory message
block. The MONADS message header information is copied from the
network process header buffer into the monads_info field of the virtual
memory message block, and the main memory page frame containing
the message data is pointed to by the physical_address field2.

When a network process page buffer is used for an unsolicited incoming
message, its replacement is the responsibility of the kernel process
receiving the message. Such replacement is achieved by

1 The received virtual memory page is received directly into the page frame which it will
occupy. In this way we avoid the need to locally copy the page after it is received.

2 For short messages there is no data stored in the attached page frame.

-167~

(1) obtaining a free main memory page frame3, and

(2) linking a virtual memory message block with the request_type
field set to receive_request onto the network process queue.

Whenever a kernel process asks the network process to transmit a
message to which there will be a reply, it provides buffer space for the
reply using a receive_request virtual memory message block. In this
way it is ensured that there is always a sufficiently large pool of
outstanding receive requests at the network process. The network
process returns the reply message to the appropriate kernel process
using a virtual memory message block with the request_type field set to
receive_request_reply.

Extensions currently being designed will allow MONADS computers to
be linked to networks using standards such as TCP/IP [30]. The
messages exchanged by such networks do not include a MONADS
header, and do not necessarily conform in size to the long, short, and
up/down protocol messages used by the MONADS DSM. This
inconsistency in size introduces some problems with provision of buffer
space for receipt of messages, particularly since we wish to avoid local
copying of virtual memory pages received as part of the DSM
implementation. The design requires an additional level of message
identification included in the network header section of messages4.
Such information will allow the network process to differentiate
between the receipt of MONADS messages, which will be processed as
described in this thesis, and other messages, which will be handled by
a new kernel process. Fortunately such identification is included as part
of the TCP/IP definition.

3 The receiving kernel process checks whether the incoming network message is long or
short. If the message is short, the frame pointed to by the virtual memory request block
does not contain any of the incoming message, and is immediately used to build a new
receive_request page request block. If it is long, the frame pointed to by the virtual
memory request block contains part of the message, so a free page frame is obtained
prior to building the receive_request message block.

4 This may be achieved in Ethernet, for example, using the type field of the message

header.

-168 -

8.2.1 The Ethernet Interface

The MONADS DSM has been tested using a network of three MONADS-
PC computers each connected to a 10 mbps Ethernet using an EXOS
201 Intelligent Ethernet Controller [45]. This controller presents a
standard Ethernet Data Link interface [18] to the network process by
running the NX 200 Network Executive [46].

The network process communicates with NX 200 using two circular,
singly linked lists maintained in shared host memory, and two one byte
input/output ports. The circular lists respectively provide host to Exos
and Exos to host message blocks. The input/output ports provide a
means for

(1) resetting the Exos controller,
(2) clearing interrupts,
(3) returning Exos status information, and

(4) communicating one byte values to the controller as necessary,
for instance, during initialisation of the controller.

The message blocks are used by the network process to convey data for
transmission, and by the NX 200 Executive to provide received
messages. Each message block contains an owner field which is initially
set to host for blocks in the host to Exos list and to Exos for blocks in
the Exos to host list.,

Data for transmission over the ethernet as part of a single message may
be provided in several non-contiguous memory buffers. Transmitting a
virtual memory page, for instance, involves providing Exos with

(1) the address of a header buffer consisting of a standard Ethernet
header followed by a MONADS header, and

(2) the address of a separate main memory page frame containing
the virtual page.

These addresses, together with length and message type information,
are provided to Exos by appropriately completing a host to Exos

-169 -

message block. Informing Exos of a receive_request, on the other hand,
involves providing

(1) the address of a header buffer,
(2) the address of a main memory page frame, and
(3) the address of a checksum buffer for error detection calculation,

together with length and message type information. When the message
block is ready, the ownership field is set to Exos and a word written to
one of the input/output ports to signal that Exos should check the host
to Exos list.

Exos signals completion of a requested task by appropriately filling in
an Exos to host message block defining,

(1) which request this block is answering,
(2) the status of the request, and

(3) the addresses and lengths of main memory buffers containing
the transmitted or received data as appropriate.

Lastly Exos changes ownership of the message block to host and
interrupts the network process to inform it to check the Exos to host
queue.

8.3 Processing Page Faults

In the following discussion of the resolution of page faults we use the
FAST scheme for addressing moved modules (see section 6.2.3).

The kernel virtual memory process is responsible for coordinating the
movement of virtual pages into and out of the local main memory and
disks. The process becomes aware of the occurrence of a page fault
when it first receives a virtual memory message block for the page. It
then categorises the page fault as either

(1) locally resolveable and local, or

-170 -

(2) remotely resolveable and local, or
(3) locally resolveable and remote, or
(4) unresolveable.

To achieve this categorisation, the virtual memory process must decide
whether the fault is

(a) local or remote, and

(b) locally resolveable, remotely resolveable, or not resolveable at
all.

8.3.1 Determining Whether a Page Fault is Local or Remote

The virtual memory process first becomes aware of the existence of a
page fault for a page when it receives a virtual memory message block
with the request_type field set to either

(a) receive_request_reply. These blocks, which indicate a remote
page fault, always emanate from the network process as a result
of the receipt of a message from another node, or

(b) new_page_fault. These blocks, which indicate a local page fault,
emanate from either the local page fault interrupt process, or
the local virtual memory process, as described below.

When the virtual memory process receives a kernel message with the
request_type field set to receive_request_reply, it then checks the
monads_info field of the block. The structure of this field is shown in
appendix 4. If the monads_message_type field is set to request_page,
then the block contains a remote request for a local page. The virtual
memory process uses the requested_as, requested_page, and
advisory_info fields of the monads_info to fill in the address_space,
page_number, and advisory_info fields of the virtual memory message
block, and sets the request_type field to new_page_fault. The resultant
virtual memory message block is very similar to the block used by the
page fault interrupt process to inform the virtual memory process of a
local page fault. The virtual memory process then links the block onto

-171 -

its own request queue, and performs a V operation on its own
semaphore. In this way the processing of a remote request may be
achieved using largely the same mechanisms as are used for the
processing of local page faults. It is only after the page is in main
memory that processing of remote and local faults differs again.

8.3.2 Determining the Resolveability of a Page Fault

As the first step in determining whether a page fault is resolveable, and
if so whether locally or remotely, the virtual memory process checks
the advisory_info field of the virtual memory message block. Such
advisory information is provided for moved modules by either

(1) the microcode which implements the module open instruction
for a local page fault5, or

(2) the network message requesting provision of the page for a
remote page fault.

If the advisory field is not empty, the provided node number/volume
number pair is used as the storage location of the page. Otherwise the
data stored in the address_space field is used. The process then

(1) checks the LMT to see whether the volume probably containing
the page is locally mounted. If the appropriate LMT entry does
not exist, then

(2) checks the FMT to see whether the volume probably containing
the page is listed. If the appropriate FMT entry does not exist,
then

(3) assumes that the volume probably containing the page is still at
its original location.

5 Once a moved module is open, use of the FAST technique precludes the need for
advisory information for subsequent accesses to pages from the module (see section
6.2.3).

-172 -

After this sequence of steps, the virtual memory process has made a
decision as to whether the page fault is locally or remotely resolveable.
This decision may, of course, be incorrect because either

(a) the advisory information is out of date, or

(b) the page fault is in fact unresolveable.

8.3.3 Resolution of a Local Page Fault

When a local page fault occurs, the microcode activates the page
interrupt process. This process obtains a virtual memory message block
from the heap of available blocks, fills in the address_space,
page_number, and process_number fields, sets the request_type to
new_page_fault, sets the request_from field to local, and sets the
disk_number field to -1 since the actual disk containing the page is at
this stage unknown. The process that generated the faulting address is
then suspended and the virtual memory message block is linked to the
virtual memory process queue.

The virtual memory process acts as a state machine, with the current
state of the page represented by a virtual memory message block being
indicated by the contents of the request_type field. Pages, and thus
virtual memory request blocks, move between states according to the
actions taken by the virtual memory process and the disk process as
shown in appendix 2. As previously described, the initial state for a
block representing a local page fault is new_page_fault.

The first check determines whether the faulting virtual page is actually
in main memory but marked as invalid in the ATU. This situation
occurs when an occupied and unmodified main memory page frame is
returned to the free list®, or a modified page is linked to the wait list in
preparation for writing to disk prior to being returned to the free
memory pool. Such a page is simply removed from the free or wait list
and its ATU entry is validated. A user scheduler message block is then
completed, marked as indicating that a process is being re-activated

6 This list implements the pool of free main memory page frames.

-173 -

following a page fault, and linked to the user process scheduler
message queue. This effectively reactivates the suspended user process.

If the required page is really not in main memory, the virtual memory
process |

(1) Checks that there are sufficient free main memory page frames
to enable resolution of the page fault. If the pool of free main
memory page frames is too small?, processing of the page fault
is suspended and page discard is initiated.

(2) Determines whether the fault is locally resolveable, as described
in section 8.3.2.

8.3.3.1 Local Resolution of a Page Fault

In order to transfer a locally stored virtual page into a main memory
page frame, the disk address of the page must be determined. To do
this the address space page table is consulted8. As described in section
4.3.2, this page table is two-tiered, consisting of a primary page table
potentially occupying 32 pages of virtual memory, and a secondary page
table containing an entry for each of the primary page table pages. The
secondary page table is stored in the root page of the address space. To
allow efficient access to the pages of small address spaces, the first 256
entries of the primary page table are also stored in the root page of the
address space. In order to find the disk address of the faulting page,
the virtual memory process must execute the following algorithm.

7 The pool must be big enough to provide for the largest possible number of associated
page faults (see section 4.3.2).

8 In the case of a page fault on the root page of a moved module the page table is consulted
in conjunction with the FAST,

-174 -

begin (algorithm for obtaining the disk address of a page}
if the page is in the lowest 256 pages of the address space then
begin
read the page disk address from the root page;
{if this read is successful then the disk address of the
faulting page is known}
if the result is a page fault then
begin
obtain the disk address of the root page
from the volume address space table;
{this table is implemented as a hash table and is locked
down in main memory}
with the virtual memory message block do
begin
store the disk address in the disk_page field;
store the root page virtual page number in
the page_disk field;
set the request type to disk_read;
obtain a free main memory page frame;
store the frame address in the physical address field
end; {with}
link the message block to the disk process queue;
perform a V operation on the disk process semaphore;
wait for the message block to be returned;
map the root page into the ATU;
read the disk address of the faulting page
end (if page fault reading primary page table}
end {if in lowest 256 pages}
else {page is above the first 256 pages of the address space]}
begin
calculate the virtual address of the primary page table entry;
read the disk address of the faulting page from the primary
page table;
{if this read is successful then the disk address of the
faulting page is known}
if the result is a page fault then
{the primary page table page is not in main memory])
begin
read the disk address of the primary page table page
-175-

from the secondary page table held in the root page of
the address space;
if the result is a page fault then
{address space root page is not in main memory
- bring it in}
begin
obtain the disk address of the root page from the
volume address space table;
with the virtual memory message block do
begin
store the disk address in the disk_page field;
store the root page virtual page number in
the page_disk field;
set the request type to disk_read;
obtain a free main memory page frame;
store the frame address in the physical
address field
end {with)
link the message block to the disk process queue;
perform a V operation on the disk process
semaphore;
wait for the message block to be returned;
map the root page into the ATU;
read the disk address of the primary page table page
end; (if page fault reading secondary page table}
{now we have the disk address of the primary page table
page - bring it into main memory}
with the virtual memory message block do
begin
store the disk address in the disk_page field;
store the virtual page number in the page_disk field;
set the request type to disk_read;
obtain a free main memory page frame;
store the frame address in the physical address field
end; {with}
link the message block to the disk process queue;
perform a V operation on the disk process semaphore;
wait for the message block to be returned;
map the primary page table page into the ATU;
-176-

end:

When

read the disk address of the faulting page from the
primary page table
end (if page fault reading primary page table}
end {else page is above first 256 pages}
{at this stage we have the disk address of the faulting page}
{of algorithm for finding the disk address of a virtual page}

the virtual memory process knows the disk address of the

faulting page, it

(1)

(2)

(3)

completes the disk_function, disk_number, and disk_page
fields of the virtual memory message block,

obtains a free main memory page frame and stores its address in
the physical_address field, and

links the block to the disk process queue.

The disk process loads the requested disk page into the provided main
memory page frame, marks the virtual memory message block as

page_on_way_in, and links the block to the virtual memory process

queue.

(1)

(2)

(3)

When the virtual memory process receives the block, it

checks the disk_status field, and if the read was unsuccessful it
repeats the read request,

maps the page into the ATU

obtains and completes a user scheduler message block and links
the block to the user process scheduler queue, with the result
that the waiting user process will be re-activated.

If the page fault occurred as part of a module open operation, the

virtual

memory process provides enough status information to allow the

microcode to modify the MCS segment capabilities as described in
section 6.2.3, and if necessary to update the module capability advisory

field.

=177 -

8.3.3.2 Remote Resolution of a Page Fault

If the volume that probably contains the page is not locally mounted,
the kernel must obtain a copy of the page from the node on which the
volume is mounted, the owner node for the page.

The initial step is to prepare for receipt of the virtual page by providing
the network process with a page frame buffer. To do this, the virtual
IMEemory process

(1)

(2)

(2)

(3)

obtains a free virtual memory message block,

obtains a free main memory page frame and stores its address in
the physical_address field of the new virtual memory message
block,

sets the request_type field of the new block to receive_request,
and sets the block_source field to virtual_memory_process, and

links the receive_request virtual memory message block to the
network process queue, and interrupts the process to inform it
of the new request.

The next step is to cause transmission of a short message requesting
provision of the virtual page. To do this the virtual memory process
uses the original new_page_fault virtual memory message block, and

(1)

(2)

(3)

sets the request_type field to send_request_short, and the
block_source field to virtual memory_process,

builds the MONADS header information by setting the source
field to the local logical node number, the reply_to field to
virtual memory process, the message_type field to
request_page, the volume field to the volume number indicated
in the capability advisory field or page address as appropriate,
and copies the requested_as and requested_page fields from
the matching fields of the original message block,

completes the MONADS header information by setting the
destination field to the logical node number obtained from the
FMT, advisory information, or page address as appropriate (see

-178 -

section 8.3.2), and the volume field to the volume number
obtained from the advisory information, or page address as
appropriate,

(4) links the completed message block to the network process
queue, and

(5) interrupts the network process to inform it of the newly linked
message block.

When the network process has transmitted the request_page message,
it links the message block back onto the virtual memory process queue
and signals this by performing a V operation on the process semaphore.
The request_type field of the block is set to send_request_short_reply.
On receipt of such a message block, the virtual memory process

(1) checks the request_status field, and

(2) if the status is satisfactory, links the message block to the
pending requests queue, which is a list of virtual memory
request blocks for which a reply has not been received. This list
is maintained by the virtual memory process.

If the request_status field indicates that the destination node is off-
line®, an invalid_page exception condition occurs for the user process
indicated in the process_number field of the message block.

The reply to the request_page message is received by the virtual
memory process as a virtual memory message block with the
message_type field set to receive_request_reply. If the message_type
field of the MONADS header is set to supply_page, the required virtual
page is contained in the page frame whose address is contained in the
physical_address field of the message block. In this case the
requested_as and requested_page fields of the MONADS header are
used to match the newly arrived page with the appropriate message
block on the pending requests queue. Then

9 The fact that a node is off-line is indicated to the network process by the lack of an
entry mapping the logical node number to a network address in the NAT (see section
5.2.3).

-179 -

(1) the supplied_as and physical_address fields are copied from the
newly received message block to the block on the pending
requests queue,

(2) the newly received block is returned to the pool of free virtual
memory request blocks,

(3) the request_type field of the original message block is set to
new_page_on_way._in,

(4) the block is linked onto the virtual memory process message
queue, and

(5) a V operation performed on the virtual memory process
semaphore.

When the newly linked message block is processed, resolution of the
page fault is completed as described in section 8.3.3.

8.4 Conclusion

The MONADS kernel is structured as a set of co-operating processes
which communicate using message blocks. Each of these processes
performs a specific kernel task. Implementation of the MONADS DSM
involved modification to the virtual memory and user process scheduler
kernel processes, and the creation of a new network process.

The new network process interfaces with the network hardware,
maintains knowledge of the status of other nodes, and provides a
network message passing service to the rest of the kernel.
Modifications to the virtual memory process allow it to detect the local
occurrence of remote page faults, act as a server of local pages in
accordance with the coherence protocol, and implement the stability
protocol. Changes to the user process scheduler allow it to co-operate
with the schedulers on other nodes, thus scheduling user processes on
a network-wide basis.

Although no accurate timing is available yet due to lack of support in
the higher level system software, initial indications are that network

-180 -

paging will not be significantly slower than paging from local disk. This
is supported by reports from other DSM implementations [74],
particularly if the required page already exists in the main memory of
another node [27].

-181 -

Chapter 9 CONCLUSION

In the introduction to this thesis two major aims were identified for
the research. These were

(1) The development of a scaleable design for a local area network
(LAN) of computers linked to form a distributed system. This
design would

o allow the sharing of all resources such as data, programs,
and devices,

e provide fine-grained protection of access to resources,
o provide location and naming transparency, and

e provide a coherent store, so that all users at all nodes have
the same view of shared data.

(2) The development of a stable virtual store. Such a store would

e allow individual modules or groups of modules to be
stabilised independently of the other modules in the store,

¢ provide a basis for the construction of higher-level
transaction based systems by providing for user initiation of
stabilise operations,

* make efficient use of disk space and processor cycles, and
¢ be extendable to a network of connected machines.

Several approaches to the provision of distributed access to resources
were examined. These were

(1) Message Passing,
(2) Remote Procedure Call (RPC), and

(3) Distributed Shared Memory (DSM).

-182-

Message passing systems allow the sharing of data by value, meaning
that dynamic data structures must be flattened before they may be
shared. Such systems were found to be deficient in the areas of naming
and location transparency, access control, and fault tolerance. The
message passing facility provided by these systems was, however, found
to be useful in the implementation of RPC systems.

RPC systems also require the flattening of dynamic data structures
prior to sharing. Some sophisticated RPC-based systems were
examined, and these were found to provide transparent machine
interconnection, distributed file systems, and distributed load sharing.
Some deficiencies were found in the areas of data consistency, access
control, and fault tolerance.

DSM allows the sharing of data by reference, meaning that all kinds of
data structures may be shared. The DSM systems examined successfully
provided location and naming transparency, and maintained a coherent
view of shared data. Data was not, however, managed in a uniform
manner, because the memory space available to processes was
partitioned into shared and private regions. This method of
management was used to minimise the size of the full shared memory
page table maintained at each of the connected nodes, and to provide a
means of protecting local data from general access. Each of the shared
memory page tables contains data about the location and status of every
page of the shared memory, meaning that the size of the table is
directly proportional to the size of the shared memory. Deficiencies of
the DSM systems examined include the lack of a uniformity of data
management, the lack of scaleability of the DSM, the lack of protection
of access to data stored in the DSM, and the lack of fault tolerance.

Despite the deficiencies of existing DSM systems, the DSM paradigm
was selected as being a natural and elegant approach to the
achievement of transparent distribution. The result of the research is
the development of a new approach to the construction of DSM. This
approach is significant because the the new system offers

(1) uniformity of access to resources,

(2) naming transparency,

-183 -

(3) location transparency,

(4) fine-grained control of access to resources,
(5) stability,

(6) persistence, and

(7) scaleability.

In the following sections we summarise the achievements in each of
these areas.

9.1 Uniformity of Access to Resources

The use of the distributed shared memory paradigm for the entire
virtual memory addressable by processes results in uniformity of access
to resources. All such resources are accessed by reference, that is
according to their location in the DSM. Such references are the virtual
memory addresses of the code which implements programs or device
drivers, or of data which is used and accessed by such programs. The
virtual memory space is universal, with every process having a coherent
view of this memory regardless of the node on which it is executing.

9.2 Naming Transparency

All resources are identified by a unique name which defines the
location of the resource in the virtual memory space. A unique range of
virtual memory addresses is allocated to each node, and all objects
created by a node reside in the node's address range. The virtual
addresses allocated to a node are further divided into within-node disk
partitions (called volumes) and within volume address spaces (called
modules). The name or address of a resource, then, uniquely identifies
the resource by defining the node on which the resource was created,
and the original storage location of the resource within that node. This
use of structured addresses also facilitates distributed access to
resources. Significantly this is achieved without sacrificing location
transparency.

-184 -

9.3 Location Transparency

Despite the fact that structured addresses are used to provide naming
transparency, it is possible to move modules between volumes and
volumes between nodes. An efficient technique which provides
distributed access to the modules stored on a moved volume was
described. Alternate approaches to the relocation of individual modules
were developed. The first approach, which uses the moved object table
(MOT), introduces inefficiency because it imposes an overhead on the
location of unmoved as well as moved modules. The second approach,
which uses the foreign address space table (FAST), allows distributed
access to moved modules without imposing an overhead on access to
unmoved modules.

9.4 Control Over Access

The DSM provides a single global virtual memory space. All processes,
programs, and data reside in this memory space. The system provides a
two level protection scheme which affords fine-grained control over
access to objects in the DSM. The highest level of protection is
provided by module capabilities over access to information-hiding
modules. These capabilities define the module, the set of available
module interface procedures, and capability propagation permissions.
No user may access a module without the appropriate module
capability. A second level of protection controls access within a module.
This level of protection is achieved using segment capabilities. These
control access to sections of modules, called segments, which contain
logically related data such as a specific data structures or programs.
The use of such sophisticated protection techniques permits the
storage of all data in the DSM without compromising efficiency of
access to private data.

9.5 Stability

The stability scheme developed in this thesis is necessary because at
any time the state of the DSM is a combination of the contents of the
local page caches and the data stored on disk. This means that a failure
which prevents the storage of modified data to disk may result in a disk

-185 -

image of the DSM which presents an inconsistent view of the system
state. The disk image of the DSM is, of course, the starting point for
the system when it restarts. The stability scheme was developed in two
stages. The first stage ensures the stability of a non-distributed virtual
store using a technique based on shadow paging. The second stage
extends and modifies the non-distributed scheme, using a network
message protocol to provide stability for the entire DSM. The scheme
represents a significant improvement on alternate designs because it
involves no copying of data, makes efficient use of available disk space,
does not require static partitioning of disks, and allows sub-sections of
the store to be stabilised separately. This last property of the scheme
makes it an ideal basis for the development of a higher-level transaction
mechanism as required by database management systems.

9.6 Persistence

The distributed store created by this research provides a uniform
storage abstraction which is independent of the lifetime of the data
being stored. As such the store may be described as a persistent store.
The achievement of storage uniformity is a result of several separate
features of the DSM. Firstly, there is no concept of a separate file
system. All programs and data reside in the virtual memory. The
movement of data between main memory and secondary storage is
handled by the system and is totally transparent to the user. Secondly,
all objects in the store are treated in a uniform manner, so that the
persistence of an object is not related to its type. Thirdly, the store is
stable, as described above, meaning that the store appears to be error
free, and that failure of the store is hidden from the user. Lastly, the
size of the store is scaleable and bounded only by implementation, so
the store provides the abstraction of having unbounded size.

9.7 Scaleability

The DSM model developed in this thesis is scaleable to larger stores
than that implemented, which uses 60 bit virtual addresses. This
feature is a major difference between the MONADS DSM model and
other DSM models described in the literature. Virtual memory systems

-186-

must maintain data structures which map between pages of the virtual
memory and main memory page frames for those pages which exist in
main memory, and between pages of virtual memory and disk pages for
those pages which do not exist in main memory. A single data structure
called a page table is typically used to store these mappings. Scaleability
of the MONADS DSM is achieved primarily through the separation of
these virtual memory to main memory and virtual memory to disk
mappings. The result is that disk page tables are maintained in virtual
memory together with the modules they describe, whilst main memory
page tables are maintained on a per mode basis and describe only the
virtual pages currently in main memory at that node. This design
results in main memory management data structures which grow
logarithmically with the size of the virtual memory. As a result the DSM
is scaleable to large virtual memories.

9.8 Future Directions

The design presented in this thesis provides the basis for a practical
and scaleable local area network based on the DSM paradigm. However
there are a number of areas for future research. These include

(1) further development of the network-wide stability scheme,

(2) the expansion of the architecture to provide for the connection
of heterogeneous machines,

(3) examination of the suitability of the stability approach to
maintenance of integrity of the distributed store, and

(4) the development of techniques for the efficient addressing and
effective utilisation of massive main memories.

The network-wide stability scheme proposes the maintenance of a
dependency graph at each node to describe volume inter-relationships.
When the volumes whose relationship is described by such a graph are
stabilised, this must be achieved as an atomic operation. The protocols
used to maintain such graphs, together with protocols for the election
of a master node for the stabilise operation, and for recovery from the
failure of such a master, require further investigation.

-187-

Research into the connection of the DSM to a heterogeneous network
has already commenced. The design of TCP/IP connectivity is under
development, and will allow the receipt and transmission of standard
IP packets. The use of such connectivity to allow heterogeneous access
to the DSM is under investigation.

The stability approach to the problem of store integrity, whilst
apparently suitable for local area network (LAN) application, may not be
the optimum scheme for a wide area network (WAN) implementation of
the architecture. It appears, for instance, that the distances involved in
WANs, with its effect on message propagation, may result in
unacceptable delays during stabilise operations. The use of transaction-
based updates to shared data requires investigation. The results of such
research may have implications for the problem of network-wide
stability in LANs.

Finally, investigation into the use of massive main memories has already
commenced [103]. At this stage such work has focused on addressing
and utilisation issues. Investigation of a distributed massive memory
architecture would involve issues such as the optimum granularity for
distribution and coherence, and the possibility of migration of
processes to the source of massive data structures.

-188-

Appendix 1 Network Message Types

Nodes communicate by transmitting messages on the interconnecting
network. These messages are used to exchange both protocol
information and virtual memory pages. The message_type field of the
monads header for a message defines the purpose of the message.
Possible messages are

here_i_am(sending node number, physical network address)
here_i_am_too(sending node number, physical network address)
invalid_address_space(requested page number)

request_changed_access_rights(requesting node number, page
number, new access rights)

access_rights_changed(page number, new access rights)
return_page(returned from node number, page number, page data)
page_received(receiving node number, page number)
invalidate_page(page number)

page_invalidated(sending node number, page number)
send_page(send to node number, page number)
node_shutting_down(sending node number)
activate_process(process number)

where_is_volume_mounted(requesting node number, volume
number)

volume_mounted(mounting node number, volume number)

module_moved(module number, new volume number)

-189-

The following messages are used for the MOT implementation of moved
modules

request_page(requesting node number, requested page number,
storage volume number)

supply_page(supplied page number, page data)}

The following messages are used for the FAST implementation of
moved modules

request_page(requesting node number, requested page number)

request_root_page(requesting node number, requested page
number, storage volume number)

supply_page(supplied page number, page data)

supply_root_page(supplied page number, page data, requested page
number)

-190 -

Appendix 2 State Transition Diagrams

This appendix provides an alternate view of the DSM model by
describing it in terms of the states of a virtual memory page. The virtual
memory page is the unit of transfer of program code and data between
local disk and main memory, and between the main memories of
network nodes. When an event (such as an interrupt or receipt of a
message) occurs for a page, the action taken by the kernel depends on
the current state of the page. Typically, the effect of this action moves
the page to a new state.

Fifteen states for a virtual page are identified, and are listed below. Two
state transition diagrams are included. The first diagram shows
transitions between states in terms of events, with these events being
described on the arcs which represent the transition. The second
diagram, which shows state transitions in terms of network messages,
uses a legend to indicate the message or sequence of messages causing
a transition.

A2.1 States of a Virtual Memory Page

1 On Disk at Owner Node

The page is stored on a disk page at the owner node, and no copy of
the page exists in the main memory of any node. This is the initial state
for every virtual memory page.

2 In Owner's Main Memory Only, RO, Unmodified, Not Locked Down

The page is mapped into the owner node's ATU as read-only. It does
not exist in the main memory of any other node. It has not been
modified since being brought into main memory, and it is not locked
down, meaning that page discard may remove it from main memory at
any time.

-191 -

3 In Owner's Main Memory Only, RO, Unmodified, Locked Down

The page is mapped into the owner node's ATU as read-only. It does
not exist in the main memory of any other node. It has not been
modified since being brought into main memory, but it is locked down.
This means that page discard may not remove it from main memory.
This state is used to ensure that the page cannot disappear from main
memory whilst awaiting transmission to another node.

4 In Owner's Main Memory, RO, Modified, Not Locked Down

The page is mapped into the owner node's ATU as read-only, but
marked as modified. Prior to page discard, the page must be flushed to
disk, thus updating the permanent copy of the page.

5 In Owner's Main Memory, RO, Modified, Locked Down

The page is mapped into the owner node's ATU as read-only, but
marked as modified. Since the page is locked down, page discard may
not remove it from main memory. This state is used to ensure that the
page cannot be marked as invalid in the ATU whilst awaiting
transmission to another node.

6 In Owner's Main Memory RW

The page is mapped into the owner node's ATU as read/write. In
accordance with the coherence strategy, the page does not exist in the
main memory of any other node.

7 In Owner's Main Memory Unmodified, RO, and in Main Memory of
Remote Nodes Unmodified, RO

The page is mapped into the owner node's ATU as read-only and
unmodified. The page is also mapped into the ATU of more than one
other one other node, in each case unmodified.

192 -

8 In Owner's Main Memory Unmodified, RO, and in Main Memory of
One Remote Node Unmodified, RO

The page is mapped into the owner node's ATU as read-only and
unmodified. The page is also mapped into the ATU of one other one
other node unmodified.

9 In Owner's Main Memory Modified, RO, and in Main Memory of
Remote Nodes Unmodified, RO

The page is mapped into the owner node's ATU as read-only and
modified. The page is also mapped into the ATU of more than one
other node, in each case unmodified.

10 In Owner's Main Memory Modified, RO, and in Main Memory of
One Remote Node Unmodified, RO

The page is mapped into the owner node's ATU as read-only and
modified. The page is also mapped into the ATU of one other node
unmodified.

11 In Main Memory of Remote Nodes Unmodified, RO, Not in Owner's
Main Memory

The page is mapped into the ATU of more than one remote node as
read-only, but is not mapped into the owner node's ATU. In each case
the page is marked as unmodified in the remote node's ATU.,

12 In Main Memory of Remote Node Unmodified, RO, Not in Owner's
Main Memory

The page is mapped into the ATU of one remote node as read-only, but
is not mapped into the owner node's ATU. The page is marked as
unmodified in the remote node's ATU.

-193 -

13 In Main Memory of Remote Node Modified, RO, in Main Memory of
Remote Node(s) Unmodified, RO, Not in Owner's Main Memory

The page is mapped into the ATU of multiple remote nodes as read-
only, but is not mapped into the owner node's ATU. In the ATU of one
of the remote nodes the page is mapped as modified.

14 In Main Memory of Remote Node Modified, RO, Not in Owner's
Main Memory

The page is mapped into the ATU of a remote node as read-only, but is
not mapped into the owner node's ATU. In the ATU of the remote node
the page is mapped as modified.

15 In Main Memory of Remote Node RW

The page is mapped into the ATU of a remote node as read/write. In
accordance with the coherence strategy, the page does not exist in the
main memory of any other node.

-194 -

A2.,2 State Transition Diagram (transitions in terms of events)

Local Page Faul

-195-

‘Write Fault at Owner Node Rete P Disgurd Remote Page Fault
Not Current Version Node
. Remote Write Remote Page
Local Page Discard m»::. Discar Wmﬁ_ﬂu%ﬁ Page Remote Page
Fault
Write Fault at Remote Page Fault Remote Page Page Discard Current Version,
Remote Page Discard Owner Node Discard Muhiple More Remote Nodes
Page Discard at Owner,
Remote PageFault \ Page Flushed 1o Disk Remote Page
Remote Page Fault Remote Page Discard Pase Discard Curr Discard
age Discar ent
Second Last Remote Copy Version, Ons Mote
Remote Node
Remote Write
Remote Page Fault Fault
Page Trx to Remote Node Remote Page
.\\l Page Trx to Remote Node Fault
Page Trx to Remote Node
Remote Page Remole Digs Remote Write Remote
Discard Discard, Second , Page
° Last Remote Copy ° Remote Page Discard Discard
Page Discard Remote Page
Remote Page at Owner, Discard Second
Fault H.umUm Flushed Last Copy
Remote Write Fault, to Disk /
Invalid ar Owner Remote
Jols Remote Page
- Fault SLoLe
Remote Write Fault Owner Page -e Fault
Page Discard at Owner, Fault Remote
Page Flushed to Disk i o
Remote Write Fault Remote Page Discard Write
Fault

6

A2.3 State Transition Diagram (transitions in terms of messages)

-196-

Legend for state transition diagram A2.3, depicting state transitions in
terms of messages.

1

o g b

10

11

12

13

14

Owner page fault interrupt resulting in new_page_fault message
linked to virtual memory process queue.

Owner page discard resulting in a message being linked to the
disk process queue with the disk_function field set to write.

Write fault interrupt at owner node. Handled internally by local
virtual memory process.

Owner node receives request_page message.
Owner node provides the page using a supply_page message.
Owner node receives page_invalidated message for the page.

Owner node transmits invalidate_page message(s) and receives
page_invalidated message(s).

Owner node receives request_changed_access_rights message.
Owner responds with access_rights_changed message.

Owner node receives return_page message and replies with
page_received message.

Local page discard resulting in a message being linked to the
disk process queue with the disk_function field set to write.
When discard complete, owner responds with
access_rights_changed message.

Owner receives request_page message. Transmits send_page
message to node with page. Node sets access to read-only, and
transmits copy of page with supply_page message.

Owner receives return_page message, and replies with
page_received message.

Owner receives request_page message. Transmits send_page
message to node with copy of page. Node transmits copy of page
with supply_page message.

Owner receives request_changed_access_rights message.
Transmits invalidate_page messages to other nodes with copies
of the page. When all page_invalidated messages received,
owner transmits access_rights_changed message to requesting
node.

-197 -

15

16

17

18

19

Owner receives request_changed_access_rights message.
Owner page discard resulting in a message being linked to the
disk process queue with the disk_function field set to write.
Owner transmits invalidate_page messages to other nodes with
copies of the page. When all page_invalidated messages
received, owner transmits access_rights_changed message to
requesting node.

Owner transmits send_page message (with itself as the send to
node) to node with page. Node sets access to read-only, and
transmits copy of page back to owner with supply_page
message.

Owner receives request_changed_access_rights message.
Owner invalidates local copy of page. Owner then transmits
access_rights_changed message to requesting node.

Owner receives request_changed_access_rights message.
Owner invalidates local copy of page. Owner transmits
invalidate_page messages to other nodes with copies of the
page. When all page_invalidated messages received, owner
transmits access_rights_changed message to requesting node.

Page invalidated at owner. Handled internally by virtual memory
process.

-198-

Appendix 3 Algorithms for the operation of kernel processes

There are three categories of kernel process. These are
(1) server processes,
(2) synchronous device processes, and

(3) asynchronous device processes.

In this appendix the algorithm for the operation of each of these
categories is shown.

A3.1 Algorithm for the Operation of a Server Process

The sole role of a server process is to service requests from other
processes. A server process has no associated interrupt, and never
directly interacts with hardware devices. As such it is scheduled by
semaphores only. The algorithm for the operation of a server process is

repeat
ksemp(queue semaphore);
process next item on queue;
remove the item from the queue;
notify the requesting process of completion

forever;

-199 -

A3.2 Algorithm for the operation of a Synchronous Device Process

A synchronous device process interacts with other kernel processes
and with hardware devices. The interaction with hardware is of a cause
and effect nature, meaning that hardware interrupts are totally
predictable and synchronous with the operation of the process. A
synchronous device process is scheduled using a combination of
hardware interrupts and semaphores, and the algorithm for its
operation is

repeat
ksemp(queue semaphore);
get next entry from queue;
start transfer on associated hardware device;
ksusp; {waiting for interrupt from h/w device}
check result;
finish job;
remove the corresponding item from the queue;
notify the requesting process of completion

forever;

-200 -

A3.3 Algorithm for the operation of an Asynchronous Device Process

An asynchronous device process interacts with other kernel processes
and with hardware devices. This interaction is of an essentially random
nature, and it is not possible to predict whether the next activation of
the process will be to service a hardware or software request. An
asynchronous device process is scheduled using a combination of
hardware interrupts and software interrupts, and the algorithm for its
operation is

repeat
kksusp;
while there is work to be done do
begin
check origin of request;
{activation indicates whether h/w or s/wj)
if origin is hardware then
begin
do some work;
notify kernel process if appropriate
end
else {origin is software}
begin
do some work:
remove request item from queue;
start transfer on associated h/w
device
if appropriate
end
end

forever:

-201 -

Appendix 4 Implementation Details

This appendix describes the various data structures used in
implementing the MONADS DSM.

A4.1 Virtual memory request block

The virtual memory request block is used for kernel processes at the

same node to communicate as necessary to achieve virtual memory
management at the node. The fields of a virtual memory request block

are

(a)

(b)

(c)

(d)

(e)

()

(g)

(h)

request_next. Pointer to the next block in a list of blocks.

request_type. Code defining what action is being requested with
this block. The actions are listed in figure ??, and their purpose
described in the text.

address_space. Number of address space containing the page to
which the original request refers.

page_number. Number of the within address space page to
which the original request refers.

advisory_info. Advisory information gleaned from the module
capability used in an attempt to open a module. This information
is copied into the virtual memory request block when it is set
up by the page fault interrupt process. The use of this
information is described in section 6.2.

process_number. The number of the local process waiting on
the page, if any.

disk_page_link. Link to list of virtual memory request blocks
referring to the same disk page.

process_link. Link to list of virtual memory request blocks
referring to the same virtual page.

202 -

(1)

§)

(k)

(1)

(m)

(n)

(o)

(p)

(q)

(r)

(s)

net_page_link. Link to list of virtual memory request blocks
referring to virtual pages currently being transmitted onto the
network from this node.

page_status. Environment field containing current status of
search through the volume address space directory.

environment_1. Environment field used for temporary storage
of hash table information when searching through the volume
address space directory.

lock_bit. Flag indicating whether the virtual page is to locked
into main memory when mapped in.

write_fault_bit. Flag indicating that virtual memory request
block pertains to resolution of a write fault on the virtual page.

disk_function. Used when virtual memory request block is
requesting disk transfer. Possible function codes are read,
write, or mount.

disk_number. Used when virtual memory request block is
requesting disk transfer. Defines the logical volume number for
the volume on which the disk transfer is to occur.

disk_page. Used when virtual memory request block is
requesting disk transfer. Defines the disk page on which the
read or write operation is to occur.

physical_address. Contains the start address of the main
memory page used to store the virtual page to which this
request refers.

disk_status. Transfer status returned by the disk process. If this
flag is non-zero a disk transfer error has occurred.

request_status. Transmission status returned by the network
process. If this flag is non-zero then a transmission error has
occurred.

-203 -

(t)

(u)

(v)

(w)

(x)

(¥)

(z)

address_space_disk. Contains the address space number of the
current disk request. May differ from the address_space field if
finding the originally requested page involves page faults on
pages containing disk directory information.

page_disk. As for the field above, contains the within address
space page number of the page which is the subject of the
current disk request.

network_message_destination. Contains a code defining the
destination kernel process for a network message.

trx_number. Contains the transaction number for a network
request.

block_source. Contains the source kernel process for network
requests.

request_from. Flag indicating whether a request to resolve a
page fault is to resolve a local or a remote fault.

monads_info. Header information used in creating MONADS
messages for network transmission, or copied from a received
MONADS network message.

-9204 -

A4.2 Virtual memory request block request_type codes

The request_type field defines the purpose of a virtual memory request
block. The possible values of this field are

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

new_page_fault. The message block represents a new user
process page fault.

page_on_way_in. The message block signals the fact that a
virtual page has been brought into a main memory page frame
and that completion of the page fault resolution may be carried
out.

hash_table. The volume directory is being searched to find the
disk address of the root page of the address space.

new_page_on_way_in. The required page is in main memory
and simply needs to be mapped into the ATU to complete
resolution of the page fault.

high_page_table_on_way_in. The page containing the high page
table entry for the required page is in main memory and
requires mapping into the ATU.

new_page_table_on_way_in. A process has accessed a virtual
page for the very first time. The page containing the primary
page table entry for the page had also never been accessed, so a
new disk page was allocated to the page table page and all
entries initialised as null. The new page table page needs
mapping into the ATU so that the page translation may
continue.

page_cleaned. The contents of the main memory page frame
have been flushed to disk. The frame is now available for other
use.

new_flush_memory. All memory above the kernel should be
flushed to disk. This is probably required because the node is
about to be shut down.

-205 -

(i) flush_memory. The main memory page frame indicated in the

()

block has just been flushed to disk. If this frame is not the last
in physical memory, the next frame should now be flushed.

new_flush_disk. All the pages of the indicated volume must be
flushed to disk. This is required because the disk is to be
unmounted or as part of a stabilise operation.

(k) flush_disk. The main memory page frame indicated in the block

(1)

has just been flushed to disk. If the frame is not the last in main
memory containing a page from the indicated volume, then the
next such page should be flushed.

new_flush_as. All the pages of the indicated address space must
be flushed to disk. This is required because no process has the
module stored in the address space open.

(m) flush_as. The main memory page frame indicated in the block

(n)

(o)

(p)

has just been flushed to disk. If the frame is not the last in main
memory containing a page from the indicated address space,
then the next such page should be flushed.

new_address_space_on_way_in. A new address space root page
has been allocated. The page must be initialised as a root page
by creating the low address space page table entries and red
tape information, and the page must be mapped into the ATU.

delete_address_space. The indicated address space must be
deleted. This means that all pages from the address space that
are currently in main memory must be mapped out, the disk
pages allocated to the address space must be added to the disk
free list, and that the volume directory for the address space
must be removed.

delete_address_space_next. The indicated virtual page has been
mapped out of main memory (if it was mapped in) and the disk
page allocated to the page added to the disk free list. The next
page from the address space must now be deleted.

-208 -

(q)

(r)

(s)

(u)

(v)

(w)

(y)

(z)

get_page_for_network. The network process requires a free
main memory page frame. This is required to set up a number of
outstanding receive_requests to enable receipt of unsolicited
messages.

new_page_for_network. The virtual memory process is
providing the network process with a free main memory page
frame.

here_is_page_for_remote. The virtual memory process is
providing a page for transmission to a remote node.

receive_request. The network process is being asked to make
the indicated main memory page frame available for receipt of a
network message.

receive_request_reply. A message has been received and is
contained in the virtual memory request block and in the
indicated main memory page frame.

send_request_long. The network process is requested to
transmit a long message. The addressing information, header
information, and a pointer to the page of data are included in
the virtual memory message block.

send_request_long_reply. The network process has transmitted
a long message as requested and the status of this transmission
is being returned.

send_request_short. The network process is requested to
transmit a short message. The addressing information and
message is included in the virtual memory request block.

send_request_short_reply. The network process has
transmitted a short message as requested and the status of the
transmission is being returned.

node_on_line. The network process has been informed that the
indicated node has just come on line. The virtual memory
process is being informed as required by the stability protocol.

-9207 -

A4.3 Message Passing Data Structures

Data structures maintained at each node are used to implement the
MONADS DSM message passing. These data structures, defined in
pseudo code, are

type logical node_num =0 .. 3;
mm_type_code = (here_i_am, i_am_here_too, request_page,
supply_page, request_root_page,
supply_root_page, invalid_address_space,
req_access_rights, ch_access_rights,
return_page, page_received, invalidate_page,
page_invalidated, send_page,
activate_process, req_volume_location,
volume_mounted, module_moved,
node_going_down);
actual_node_num = 0 .. 2**48;
volume_no_type = 0 .. 2**6
as_type = 0 .. 2**32;
page_type = 0 .. 2**16;
page_no = record
page : page_type;
address_space : as_type
end;
access_rights = (read_only, read_write);
process_id = integer;
kernel_process_code = (disk_p, pf_interrupt_p, vm_p, logon_p,
timer_p, u_process_sch_p, terminal_p,
network_p, idle_p);
monads_header_type = record
destination : logical_node_num;
source : logical_node_num;
message_type : mm_type_code;
source_address : actual_node_num;
volume : volume_no_type;
requested_as : as_type;
supplied_as : as_type;
requested_page : page_no
access : access_rights;
second_node : logical_node_num;
{used for mounting and send-to node}
reply_to : kernel_process_code;
advisory_info : as_type;
process_no : process_id
end;
nw_message_type = 0 .. 2**16
trx_num_type = integer;
header_ptr = “message_header_type;
message_header_type = record
destination : actual_node_num;

-208 -

source : actual_node_num;
type : nw_message_type;
mess_dest : kernel_process_code;
trx_number : trx_num_type;
mon_header : monads_header_type;
next_header : header_ptr
end;
prb_req_type = (new_page_fault, page_on_way_in, hash_table,

new_page_on_way_in, high page_table_on_way_ir

new_page_table_on_way_in, page_cleaned,
flush_memory, new_flush_disk, flush_disk,
new_flush_as, flush_as,
new_address_space_on_way_in,
delete_address_space, get_page_for_network,

new_page_for_network, here_is_page_for_remote

receive_request, receive_request_reply,
send_request_long, send_request_long_reply,
send_request_short, send_request_short_reply,
node_on_line);
page_status_type = integer;
disk_fn_type = (read, write, mount);
disk_num_type = integer;
disk_page_type = integer;
mm_address_type = 0 .. 2¥*32;
disk_status_type = integer;
rq_status_type = integer;
local_or_remote = (local, remote);
prb_ptr = Avm_request_block;
vin_message_block = record
request_next : prb_ptr;
request_type : prb_req_type;
address_space : as_type;
page_number : page_type;
advisory_info : volume_no_type;
process_number : process_id;
disk_page_link : prb_ptr;
process_link : prb_ptr;
net_page_link : prb_ptr;
page_status : page_status_type;
environment_1 : page_status_type;
lock_bit : boolean;
write_fault_bit : boolean;
disk_function : disk_fn_type;
disk_number : disk_num_type;
disk_page : disk_page_type;
physical_address : mm_address_type;
disk_status : disk_status_type;
request_status : rq_status_type;
address_space_disk : as_type;
page_disk : page_type;
nw_mess_dest : kernel_process_code;
trx_number : trx_num_type;
block_source : kernel process_code;

-9209 -

request_from : local_or_remote;
monads_info : monads_header_type
end;
var vm_message_block_heap : prb_ptr;
message_header_heap : header_ptr;
vim_process_queue : prb_ptr;
network_process_queue : prb_ptr;
usr_process_scheduler_queue : prb_ptr;
disk_process_queue : prb_ptr;

-210-

BIBLIOGRAPHY

1. "PS-algol Reference Manual - fourth edition", University of
Glasgow and St Andrews, Persistent Programming Research
Report 12/88, 1988.

2. Abramson, D. A. "Hardware Management of a Large Virtual
Memory", Proc. 4th Australian Computer Science Conference,
Brisbane, pp. 1-13, 1981.

3. Abramson, D. A. and Keedy, J. L. "Implementing a Large Virtual
Memory in a Distributed Computing System", Proc. 18th
Hawaii Conference on System Sciences, pp. 515-522, 1985.

4. Acceta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R.,
Tevanian, A. and Young, M. "Mach: A New Kernel Foundation

for Unix Development", Proceedings, Summer Usenix
Conference, USENIX, pp. 93-112, 1986.

5. Albano, A., Cardelli, L. and Orsini, R. "Galileo: A Strongly
Typed, Interactive Conceptual Language", ACM Transactions
on Database Systems, 10(2), pp. 230-260, 1985.

6. Archibald, J. and Baer, J. L. "Cache Coherence Protocols:
Evaluation Using a Multiprocessor Simulation Model", ACM
Transactions on Computer Systems, 4(4), pp. 273-298, 1986.

7. Astrahan, M. M. "System R: Relational Approach to Database
Management", ACM Transactions on Database Systems, 1(2),
pp. 97-137, 1976.

8. Atkinson, M. and Morrison, R. "Persistent System
Architectures"”, Proceedings of the Third International
Workshop on Persistent Object Systems, Newcastle, Australia,
ed J. Rosenberg and D. M. Koch, Springer-Verlag, pp. 73-97,
1989.

-211-

1O,

L.

12,

13.

14.

15.

16.

17

18.

Atkinson, M. P., Bailey, P., Chisholm, K. J., Cockshott, W, P.
and Morrison, R. "An Approach to Persistent Programming",
The Computer Journal, 26, 4, Nov., pp. 360-365, 1983.

Atkinson, M. P., Bailey, P. J., Cockshott, W. P., Chisholm, K. J.
and Morrison, R. "POMS: A Persistent Object Management
System", Software Practice and Experience, 14(1), pp. 49-71,
1984.

Atkinson, M. P., Chisholm, K. J. and Cockshott, W. P. "PS-algol:
An Algol with a Persistent Heap", ACM SIGPLAN Notices,
17(7), pp. 24-31, 1981.

Atkinson, M. P., Chisholm, K. J. and Cockshott, W. P. "CMS - A
Chunk Management System", Software Practice and
Experience, 13(3), pp. 259-272, 1983.

Bacon, J. M. and Hamilton, K. G. "Distributed Computing with
the RPC: the Cambridge Approach", Distributed Processing,
IFIP, North-Holland, pp. 355-369, 1988.

Beloff, B., McIntyre, D. and Drummond, B. "Rekursiv
Hardware", Linn Smart Computing Ltd., 1988.

Bertis, V., Truxal, C. D. and Ranweiler, J. G. "System/38
Addressing and Authorisation", I.LB.M. System/38 Technical
Developments, pp. 51-54, 1978.

Bic, L. and Shaw, A. C. "The Logical Design of Operating
Systems", Prentice Hall, ISBN 0-13-540139-9, pp. 55-56,
1988.

Birrell, A. D. and Nelson, B. J. "Implementing Remote
Procedure Calls", ACM Transactions on Computer Systems,
2(1), pp. 39-59, 1984.

Black, U. "OSI - A Model for Computer Communications
Standards", International Series, Prentice Hall, New Jersey,
ISBN 0-13-638859-0, pp. 103-156, 1991.

-212-

19.

20.

21.

22.

23.

24.

25.

Bréssler, P., Henskens, F. A., Keedy, J. L. and Rosenberg, J.
"Addressing Objects in a Very Large Distributed System", Proc.
IFIP Conference on Distributed Systems, Amsterdam, pp. 105-
116, 1987.

Broéssler, P. and Rosenberg, J. "Support for Transactions in a
Segmented Single Level Store Architecture”, Proceedings of
the International Workshop on Computer Architectures to
support Security and Persistence of Information, Bremen,
West Germany, ed J. Rosenberg and J. L. Keedy, Springer-
Verlag and British Computer Society, pp. 319-338, 1990.

Brown, A. L. "Persistent Object Stores", Universities of St.
Andrews and Glasgow, Persistent Programming Report 71,
1989.

Brown, A. L. and Cockshott, W. P. "The CPOMS Persistent
Object Management System", Universities of Glasgow and St
Andrews, PPRR-13, 1985.

Brown, A. L., Dearle, A., Morrison, R., Munro, D. and
Rosenberg, J. "A Layered Persistent Architecture for
Napier88", Proceedings of the International Workshop on
Computer Architectures to Support Security and Persistence
of Information, Bremen, West Germany, ed J. Rosenberg and
J. L. Keedy, Springer-Verlag and British Computer Society, pp.
155-172, 1990.

Campbell, R. H., Johnston, G. M. and Russo, V. F. "Choices
(Class Hierarchical Open Interface for Custom Embedded
Systems", ACM Operating Systems Review, 21(3), pp. 9-17,
1987.

Challis, M. F. "Database Consistency and Integrity in a Multi-
user Environment", Databases: Improving Useability and
Responsiveness, ed B. Scheiderman, Academic Press, pp. 245-
270, 1978.

-213-

26.

27.

28.

29.

30.

31.

32.

33.

34.

Cheriton, D. R. "VMTP: A Transport Protocol for the Next
Generation of Communication Systems", Proceedings of
SIGCOMM 86, Stowe, Vt., ACM, New York, 1986.

Cheriton, D. R. "The V Distributed System", Communications
of the ACM, 31(3), pp. 314-333, 1988.

Cockshott, W. P. "Design of POMP - a Persistent Object
Management Processor", Proceedings of the Third
International Workshop on Persistent Object Systems,
Newcastle, Australia, ed J. Rosenberg and D. M. Koch,
Springer-Verlag, pp. 367-376, 1989.

Cockshott, W. P., Atkinson, M. P., Chisholm, K. J., Bailey, P. J.
and Morrison, R. "POMS: A Persistent Object Management
System", Software Practice and Experience, 14(1), 1984.

Comer, D. "Internetworking With TCP/IP - Principles,
Protocols and Architecture", Prentice Hall, pp. 49-63, 1988.

Connor, R., Brown, A., Carrick, R., Dearle, A. and Morrison, R.
"The Persistent Abstract Machine", Proceedings of the Third
International Workshop on Persistent Object Systems,
Newcastle, Australia, ed J. Rosenberg and D. M. Koch,
Springer-Verlag, pp. 353-366, 1989.

Copeland, G., Keller, T., Krishnamurthy, R. and Smith, M.
"The Case for Safe RAM", Proceedings of the 15th
International Conference on Very Large Databases,
Amsterdam, pp. 245-270, 1989.

Dasgupta, P., LeBlanc, R. J. and Appelbe, W. F. "The Clouds
Distributed Operating System", Proceedings, 8th International
Conference on Distributed Computing Systems, 1988,

Date, C. J. "An Introduction To Database Systems", The
Systems Programming Series, vol 1, Addison Wesley, ISBN 0-
201-52878-9, 1990.

-214 -

35.

36.

37.

38.

39.

40.

41.

42,

43.

Dearle, A. "On the Construction of Persistent Programming
Environments", Ph.D. Thesis, University of St. Andrews, 1988,

Delp, G. S. "The Architecture and Implementation of Memnet:
a High-Speed Shared-Memory Computer Communication
Network", University of Delaware, Udel-EE Technical Report
Number 88-05-1, 1988.

Denning, P. J. "The Working Set Model for Program
Behaviour", Communications of the ACM, 11, pp. 323-333,
1968.

Denning, P. J. "Working Sets Past and Present", IEEE
Transactions on Software Engineering, 6(1), pp. 64-84, 1980,

Dennis, J. B. and Van Horn, E. C. "Programming Semantics for
Multiprogrammed Computations", Communications of the
A.C.M., 9(3), pp. 143-145, 19686.

Digital Equipment Corporation, Intel Corporation and Xerox
Corporation "The Ethernet: A Local Area Network Data Link
Layer and Physical Layer Specification”, 1980.

Dijkstra, E. W. "Co-operating Sequential Processes",
Programming Languages, ed F. Genuys, Academic Press,
London, 1965.

Dineen, T. H., Leach, P. J., Mishkin, N. W., Pato, J. N. and
Wyant, G. L. "The Network Computing Architecture and
System: An Environment for Developing Distributed
Applications", Proceedings, 1987 Summer USENIX
Conference, Phoenix, USENIX Association, Berkeley,
California, pp. 385-398, 1987.

Edwards, D. B. E., Knowles, A. E. and Woods, J. V. "MU6-G: A
New Design to Achieve Mainframe Performance from a Mini-
sized Computer", Computer Architecture News, 8(3), pp. 161-
167, 1980.

-215-

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

Evered, M. "LEIBNIZ - A Language to Support Software
Engineering", Dr.Ing. Thesis, Faculty of Informatics, Technical
University of Darmstadt, 1985.

Excelan Inc "EXOS 201 Intelligent Ethernet Controller For
Multibus Systems Reference Manual”, Publication No.
4200006-00 Rev C, 1986.

Excelan Inc "NX 200 Network Executive Reference Manual",
Publication No. 4200036-00 Rev A with Release 5.5 Update
Notes, 1987.

Fabry, R. S. "Capability-Based Addressing”, Communications of
the A.C.M., 17(7), pp. 403-412, 1974,

Farmer, W, D. and Newhall, E. E. "An Experimental Distributed
Switching System to Handle Bursty Computer Traffic",
Proceedings of the ACM Symposium on Probabilistic
Optimisation of Data Communications Systems, pp. 1-33,
1969.

Fotheringham, J. "Dynamic Storage Allocation in the Atlas
Computer Including an Automatic Use of a Backing Store",
Communications of the ACM, 4(4), pp. 435-436, 1961.

Guy, M. R. "Persistent Store - Successor to Virtual Store",
Proceedings, A Workshop on Persistent Object Systems: their
Design, Implementation and Use, Appin, Scotland, ed R.
Carrick and R. Cooper, pp. 266-282, 1987.

Hagan, R. A. and Wallace, C. S. "A Virtual Memory System for
the Hewlett Packard 2100A", ACM Computer Architecture
News, 6(5), pp. 5-13, 1979.

Halsall, F. "Data Communications, Computer Networks, and
OSI", Addison-Wesley, 0-201-18244-0, pp. 447-495, 1988.

Harland, D. M. "REKURSIV: Object-oriented Computer
Architecture", Ellis-Horwood Limited, 1988.

-216-

54.

55.

56.

57.

58.

59.

60.

61.

62.

Henskens, F. A., Rosenberg, J. and Hannaford, M. R. "Stability
in a Network of MONADS-PC Computers"”, Proceedings of the
International Workshop on Computer Architectures to support
Security and Persistence of Information, Bremen, West
Germany, ed J. Rosenberg and J. L. Keedy, Springer-Verlag
and British Computer Society, pp. 246-256, 1990.

Henskens, F. A., Rosenberg, J. and Keedy, J. L. "A Capability-
based Fully Transparent Network", University of Newcastle,
N.S.W. 2308, Australia, Technical Report 89/7, 1989.

Henskens, F. A., Rosenberg, J. and Keedy, J. L. "A Capability-
based Distributed Shared Memory", Proceedings of the 14th
Australian Computer Science Conference, Sydney, Australia,
pp- 29.1-29.12, 1991.

Hsu, M. and Tam, V. "Managing Databases in Distributed
Virtual Memory", Harvard University, Technical Report TR-
07-88, 1988.

ISO "Information Processing Systems - Open Systems
Interconnection - Basic Reference Model", ISO 7498, 1984.

Johnston, G. M. and Campbell, R. H. "An Object Oriented
Implementation of Distributed Virtual Memory", Proceedings
of the USENIX Workshop on Distributed and Multiprocessor
Systems, pp. 39-58, 1989.

Keedy, J. L. "An Outline of the ICL2900 Series System
Architecture”, Australian Computer Journal, 9(2), pp. 53-62,
1977.

Keedy, J. L. "Paging and Small Segments: A Memory
Management Model", Proc. IFIP-80, 8th World Computer
Congress, Melbourne, Australia, pp. 337-342, 1980.

Keedy, J. L. "Support for Software Engineering in the
MONADS Computer Architecture”, Ph.D. Thesis, Monash
University, 1982.

-217 -

63.

64.

65.

66.

67.

68.

69.

70.

71.

Keedy, J. L. "A Memory Architecture for Object-Oriented
Systems", Objekt-orientierte Software und
Hardwarearchitekturen, ed H. Stoyan and H. Wedekind,
Teubner-Verlag, Stuttgard, pp. 238-250, 1983.

Keedy, J. L. "An Implementation of Capabilities without a
Central Mapping Table", Proc. 17th Hawaii International
Conference on System Sciences, pp. 180-185, 1984.

Keedy, J. L., Abramson, D., Rosenberg, J. and Rowe, D. M. "The
MONADS Project Stage 2: Hardware Designed to Support
Software Engineering Techniques", Proceedings, 9th
Australian Computer Conference, Hobart, pp. 575-580, 1982.

Keedy, J. L., Ramamohanarao, K. and Rosenberg, J. "On
Implementing Semaphores with Sets", The Computer Journal,
22(2), pp. 146-150, 1979.

Keedy, J. L. and Rosenberg, J. "Support for Objects in the
MONADS Architecture"”, Proceedings of the International
Workshop on Persistent Object Systems, Newcastle, Australia,
ed J. Rosenberg and D. M. Koch, Springer-Verlag, 1989.

Keedy, J. L. and Rosenberg, J. "Uniform Support for
Collections of Objects in a Persistent Environment",
Proceedings of the 22nd Hawaii International Conference on
System Sciences, vol II, ed B. D. Schriver, pp. 26-35, 1989.

Keedy, J. L., Rosenberg, J. and Ramamohanarao, K. "On
Synchronizing Readers and Writers with Semaphores", The
Computer Journal, 25(1), pp. 146-150, 1982.

Kilburn, T., Edwards, D. B. E., Lanigan, M. J. and Sumner, F. H.
"One Level Storage System", LLR.E. Transactions on Electronic
Computation, EC-11, No. 2, pp. 223-234, 1962.

Knapp, V. and Baer, J.-L. "Virtually Addressed Caches for
Multiprogramming and Multiprocessor Environments", Proc.,
18th Hawaii International Conference on System Sciences, pp.
477-486, 1985.

-218-

72.

3

74.

75.

76.

77.

78.

79.

80.

Koch, B., Schunke, T., Dearle, A., Vaughan, F., Marlin, C.,
Fazakerley, R. and Barter, C. "Cache Coherence and Storage
Management in a Persistent Object System", Proceedings, The
Fourth International Workshop on Persistent Object Systems,
Martha's Vineyard, Massachusetts, U.S.A., pp. 99-109, 1990.

Levy, H. M. and Lipman, P. H. "Virtual Memory Management in
the VAX/VMS Operating System", Computer, 15(3), IEEE
Computer Society, pp. 35-41, 1982.

Li, K. "Shared Virtual Memory on Loosely Coupled
Multiprocessors", Ph.D. Thesis, Yale University, 1986.

Linn, C. and Linn, J. "The Carrick-on-Shannon Architecture: A
two-level Cache-Coupled Multiprocessor Architecture", Proc.,
18th Hawaii International Conference on System Sciences, pp.
487-504, 1985.

Lorie, R. A. "Physical Integrity in a Large Segmented Database",
ACM Transactions on Database Systems, 2,1, pp. 91-104,
1977.

Matthes, F. and Schmidt, J. W. "The Type System of DBPL",
Proceedings of the Second International Workshop on
Database Programming Languages, Portland, Oregan, Morgan
Kaufmann, pp. 219-225, 1989.

Meijer, A. "Systems Network Architecture", Pitman, London,
1987.

Metcalfe, R. M. and Boggs, D. R. "Ethernet: Distributed Packet
Switching for Local Computer Networks", Communications of
the ACM, 19(7), pp. 395-404, 1976.

Morris, R. "Scatter Storage Techniques", Communications of
the ACM, pp. 38-43, 1968.

-219-

81.

82.

83.

84.

85.

86.

87.

88.

89.

Morrison, R. and Atkinson, M. P. "Persistent Languages and
Architectures", Proceedings of the International Workshop on
Computer Architectures to Support Security and Persistence
of Information, Bremen, West Germany, ed J. Rosenberg and
J. L. Keedy, Springer-Verlag and the British Computer Society,
pp- 9-28, 1990.

Morrison, R., Brown, A. L., Carrick, R., Connor, R., Dearle, A.
and Atkinson, M. P. "The Napier Type System", Persistent
Object Systems - Proceedings of the Third International
Workshop, Newcastle, N.S.W., Australia, ed J. Rosenberg and
D. Koch, Springer-Verlag, pp. 3-18, 1989.

Morrison, R., Brown, A. L., Conner, R. C. H. and Dearle, A.
"Napier88 Reference Manual", Universities of Glasgow and St.
Andrews, Persistent Programming Research Report PPRR-77-
89, 1989.

Mullender, S. J., van Rossum, G., Tanenbaum, A. S., van
Renesse, R. and van Staveren, H. "Amoeba: A Distributed
Operating System for the 1990s", Computer, 23(5), IEEE
Computer Society, pp. 44-53, 1990.

Needham, R. M. and Herbert, A. J. "The Cambridge Distributed
Computing System", Addison Wesley, London, 1982.

Organick, E. I. "The Multics System: An Examination of its
Structure”, MIT Press, Cambridge, Mass., 1972.

Parnas, D. L. "Information Distribution Aspects of Design
Methodology", Proceedings, 5th World Computer Congress,
IFIP, pp. 339-344, 1971.

Parnas, D. L. "On the Criteria to be Used in Decomposing
Systems into Modules", Communications of the ACM, 15(12),
pp. 1053-1058, 1972.

Peterson, J. L. "Myths about the Mutual Exclusion Problem",
Information Processing Letters, vol. 12, pp. 115-116, 1981.

-220-

90.

91.

92,

93.

94.

95.

96.

a7.

98.

Peterson, J. L. and Silberschatz, A. "Operating System
Concepts", Addison Wesley, ISBN 0-201-06198-8, pp. 337-
339, 1987.

Pierce, J. R. "Networks for Block Switching of Data", Bell
System Technical Journal, 51, 1972.

Popek, J. and Walker, B. "The LOCUS Distributed System
Architecture", The MIT Press Series on Computer Systems,
pp. 14-17, 40-46, 1985.

Randell, B. "A Note on Storage Fragmentation and Program
Segmentation”, Communications of the ACM, 12, 7, pp. 365-
369, 1969.

Richardson, J. E. and Carey, M. J. "Implementing Persistence
in E", Proceedings of the Third International Workshop on
Persistent Object Systems, Newcastle, Australia, ed J.
Rosenberg and D. M. Koch, Springer-Verlag, pp. 175-199,
1989.

Ritchie, D. M. and Thompson, K. "The UNIX Time-Sharing
System", The Bell System Technical Journal, 63(6), pp. 1905-
1930, 1978.

Rosenberg, J. "MONADS-PC Assembler Manual", Department
of Computer Science, University of Newcastle, Technical
Report 3, 1987.

Rosenberg, J. "MONADS-PC Instruction Set", Department of
Computer Science, University of Newcastle, Technical Report
1, 1987.

Rosenberg, J. "Pascal/M - A Pascal Extension Supporting
Orthogonal Persistence", Department of Computer Science,
University of Newcastle, Technical Report 89/1, 1989.

-221 -

99.

100.

101,

102.

103.

104.

105.

106.

107.

Rosenberg, J. "The MONADS Architecture - A Layered View",
Proceedings of the 4th International Workshop on Persistent
Object Systems, Martha's Vineyard, U.S.A., Morgan-Kaufmann,
1990.

Rosenberg, J. and Abramson, D. A. "MONADS-PC: A Capability
Based Workstation to Support Software Engineering"”, Proc,

18th Hawaii International Conference on System Sciences, pp.
515-522, 1985.

Rosenberg, J., Henskens, F. A., Brown, A. L., Morrison, R. and
Munro, D. "Stability in a Persistent Store Based on a Large
Virtual Memory", Proceedings of the International Workshop
on Architectural Support for Security and Persistence of
Information, Bremen, West Germany, ed J. Rosenberg and J. L.
Keedy, Springer-Verlag and British Computer Society, pp.
229-245, 1990.

Rosenberg, J. and Keedy, J. L. "Object Management and
Addressing in the MONADS Architecture", Proceedings of the
International Workshop on Persistent Object Systems, Appin,
Scotland, 1987.

Rosenberg, J., Koch, D. M. and Keedy, J. L. "A Massive Memory
Supercomputer”, Proc. 22nd Hawaii International Conference
on System Sciences, vol 1, pp. 338-345, 1989.

Ross, D. M. "Virtual Files: A Framework for Experimental
Design", University of Edinburgh, CST-26-83, 1983.

Schmidt, J. W. "Some High Level Language Constructs for Data
of Type Relation", ACM Transactions on Database Systems,
2(3), pp. 247-261, 1977.

Shapiro, M., Gautron, P. and Mosseri, L. "Persistence and
Migration for C++ Objects", Proceedings, European
Conference on Object-Oriented Programming (ECOOP), 1989,

Smith, A. J. "Bibliography on Paging and Related Topics",
Operating Systems Review, 12(4), pp. 39-56, 1978.

-099 .

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

Smith, A. J. "Cache Memories", ACM Computing Surveys,
14(3), pp. 437-530, 1982.

Stumm, M. and Zhou, S. "Algorithms Implementing
Distributed Shared Memory", Computer, 23(5), IEEE
Computer Society, pp. 54-64, 1990.

Sun Microsystems "RPC: Remote Procedure Call Protocol
Specification Version 2", Internet Network Working Group
Request for Comments, No 1057, 1988,

Sun Microsystems Inc. "Systems and Networks
Administration", Part No: 800-1733-10, Revision A, 1988.

Tam, M., Smith, J. M. and Farber, D. J. "A Taxonomy-based
Comparison of Several Distributed Shared Memory Systems",
Operating Systems Review, 24(3), ACM Press, pp. 40-67,
1990.

Tanenbaum, A. S. "Operating Systems: Design and
Implementation”, International Editions, Prentice Hall, 0-13-
637331-3, pp. 198-226, 1987.

Tanenbaum, A. S. "Computer Networks", International Series,
Prentice Hall, ISBN 0-13-166836-6, pp. 141-148, 1989.

Tanenbaum, A. S. "Computer Networks", International
Editions, Prentice-Hall, ISBN 0-13-166836-6, pp. 454-470,
1989.

Tay, B. H. and Ananda, A. L. "A Survey of Remote Procedure
Calls", Operating Systems Review, 24(3), ACM Press, pp. 68-
79, 1990.

Thatte, S. M. "Persistent Memory: A Storage Architecture for
Object Oriented Database Systems", Proceedings of the
ACM/IEEE International Workshop on Object-Oriented
Database Systems, Pacific Grove, California, pp. 148-159,
1986.

=293

118.

119.

120.

121.

122.

123.

124,

Traiger, 1. L. "Virtual Memory Management for Database
Systems", Operating Systems Review, 16(4), pp. 26-48, 1982.

Tuke, M. "MONADS-PC Micro-assembler Manual", Department
of Computer Science, Monash University, Technical Report 4,
1985.

Ungar, D. "Generation Scavenging: A Non-disruptive High
Performance Storage Reclamation Algorithm", ACM SIGPLAN
Notices, 9(5), pp. 157-167, 1984.

Vaughan, F., Schunke, T., Koch, B., Dearle, A., Marlin, C. and
Barter, C. "A Persistent Distributed Architecture Supported by
the Mach Operating System", Department of Computer
Science, University of Adelaide, Technical Report PS-1, 1990.

Wallace, C. S. "Memory and Addressing Extensions to a
HP2100A", Proceedings, 8th Australian Computer Conference,
Canberra, pp. 1796-1811, 1978.

Wang, P. "An Introduction to Berkeley UNIX", Wadsworth
Publishing Company, ISBN 0-534-08862-7, 1988.

Xerox Corporation "Courier: The Remote Procedure Call
Protocol", Xerox System Integration Standard 038112, Xerox
OPD, 1981.

-094 -

	Cover
	Acknowledgements
	Contents
	Synopsis
	Chapter 1 - Introduction
	Chapter 2 - Distribution Protocols
	Chapter 3 - Persistent Systems
	Chapter 4 - VM & Monads Architecture
	Chapter 5 - Monads DSM Model
	Chapter 6 - Addressing Moved Modules
	Chapter 7 - Stability of the DSM
	Chapter 8 - Implementation
	Chapter 9 - Conclusion
	Appendix 1 - Network Message Types
	Appendix 2 - State Transition Diagrams
	Appendix 3 - Algorithms
	Appendix 4 - Implementation Details
	Bibliography

