
Multi-level Neural Modelling: An Application of Object-oriented Software
Engineering

*F. A. Henskens, !P. J. Johnston, *W. McGowan
*Department of Computer Science & Software Engineering

!Centre for Mental Health Studies
University of Newcastle

N.S.W. 2308
email: henskens@cs.newcastle.edu.au, pjohnsto@mail.newcastle.edu.au, bill_mcgowan@impulseairlines.com.au

KEYWORDS:

Object-oriented, modelling, neuroscience, applications

ABSTRACT

Neu-Model, an ongoing project aimed at developing a neural
simulation environment that is extremely computationally
powerful and flexible, is described. It is shown that the use of
good Software Engineering techniques in Neu-Model’s design
and implementation is resulting in a high performance system
that is powerful and flexible enough to allow rigorous
exploration of brain function at a variety of conceptual levels.

1. INTRODUCTION

A recent development in the fields of Cognitive Science and
Neuroscience has been the use of computational models as a
means of understanding mental processes and brain dynamics
[1; 2; 3]. The use of such models defines the sub-discipline of
Computational Neuroscience, which aims to elucidate the
mechanisms of neural information processing and population
dynamics, through a methodology of incorporating biological
data into complex mathematical models. These models are to a
greater or lesser degree inspired or constrained by the functional
architecture of the brain, and the cells that comprise it. For
instance, sets of linked partial differential equations may be used
to simulate the time and voltage dependent behaviours that are
displayed in cellular membrane conductances, and which have
been observed and described in the cellular electrophysiology
literature. Such models are used to simulate experimental
results, generate novel hypotheses and provide insights into how
the brain performs computations. This type of methodology
differs fundamentally from classical modelling approaches in
computer science, specifically in the field of Artificial
Intelligence [4], where the physical structure of the brain is
ignored in efforts to duplicate its function.

The field of Computational Neuroscience has concerned
itself with modelling the brain at specific, but different, levels of
abstraction, ranging from extremely biologically detailed models
of single neurons (nerve cells) [5], to highly abstracted models
focussing upon the computational properties of specific
configurations of cellular circuitry [6]. Multi-level modelling
[7] is an emerging approach which aims to bind different levels
of abstraction, allowing a coherent and integrated investigation
of brain function.

A number of simulation environments currently exist [1, 3,
8, 9], however, these model at a particular level of biological
realism, and none of them allow a multi-level approach.
Additionally, most were researcher-need specific and not
engineered to produce compute-efficient solutions, an important
issue because sufficient processing power is a major impediment
in the field.

From the Software Engineering perspective, a large and
complex task of this kind provides an ideal opportunity to prove
and extend the latest methodologies. This paper describes Neu-
Model, an ongoing project aimed at developing a neural
simulation environment that is extremely computationally
powerful, and flexible enough to allow rigorous exploration of a
variety of conceptual levels.

2. COMPUTATIONAL NEUROSCIENCE AND LEVELS
OF MODELLING

Neural models are comprised of an array of simple
processing elements ("neurons"), which are interconnected (ie.
by "synapses"), and which represent dynamic parallel processing
systems. The field encompassing the use of such models has
variously been labelled connectionism, artificial neural network
modelling, realistic brain modelling and computational
neuroscience - the choice of terminology most often been
influenced by the degree of biological realism with which the
neural models are constrained. The choice of the two extremes
of highly abstract models versus highly realistic models also
tends to reflect the types of question being addressed. Generally
speaking this dichotomy can be considered as reflecting either:

• top-down approaches to understanding the kinds
of computations that might underlie specific
mental processes, (ie. involved for instance in the
storage and retrieval of memories, or the
transformation of an array of light on the retina
into a meaningful 3 dimensional scene) (ie. [10;
11; 12]), or

• bottom up approaches to understanding the types
of specific cellular and sub-cellular processes that
might effect population behaviours (ie. [13, 14]).

The former type of modelling strategy usually involves an a
priori computational theory of how a specific task might be
performed, and then attempts to show how a simple neural

mailto:henskens@cs.newcastle.edu.au
mailto:pjohnsto@mail.newcastle.edu.au
mailto:bill_mcgowan@impulseairlines.com.au

model might perform that computation. This type of model's
properties are typically predicated more upon the specific
pattern of connectivity or circuitry than on the range of
behaviour displayed by the individual processing elements,
which is usually modelled as a simple input-output function
[15]. Abstracted representations of neural activity may be
modelled by simple linear or non-linear functions, which
describe either activity/non-activity at any given moment, or a
time-averaged gross activation level.

At the more biologically constrained end of the spectrum
(the latter strategy), models tend to have more complex
processing elements and statistically constrained connectivity
patterns that rely upon the existence of large numbers of
elements to achieve their effects. These models employ a
methodology known as compartmental modelling, which is
based upon sets of linked partial differential equations modelling
the electrotonic properties of the cellular membrane [16], and
the active time and voltage dependant behaviours of various
ionic conductances across the cellular membrane [17]. These
properties of cellular behaviour can be described using cable
equations [16] which represent the passive electrotonic
properties of the cell, in conjunction with linked non-linear
generalised partial differential equations (PDEs) which describe
the time and voltage dependent behaviours of active cellular
mechanisms. These PDEs take parameters describing known
physiological measures and are "fitted" to observed
physiological functions. Values for parameters and fitting
curves describing dynamic functions are taken from the cellular
physiology literature. This modelling strategy allows an arbitrary
level of complexity in terms of the explicit modelling of realistic
dendritic tree structures and the inclusion of numerous
parameters modelling the effects on the intracellular and
extracellular conductances operating on varying temporal scales.

The relative merits of these two approaches are clear.
Abstract models are easy to understand and relatively
computationally inexpensive but often it is hard to see what they
might have to do with actual brain structure and function (apart
from wishful thinking on the part of the modeller). Realistic
models are much less transparent, there is a greater number of
variables and therefore a much larger behavioural state space,
and they are much more computationally expensive than abstract
models. However they yield data that can be more directly
compared with measures of real brain activity (such as EEG and
single unit recordings). Moreover, there is a much stricter
isomorphism between the thing been modelled and the model
itself.

A methodological approach is emerging, not that takes a
middle path between these extremes, but rather that takes a
number of middle paths. This approach is called multi-level
modelling. The aim is to use a combination of top down and
bottom up modelling strategies that attempt to show
isomorphisms between models at different levels of description,
and that converge upon a coherent solution through the iterative
application and relaxation of constraints (ie. [18]).

3. EXISTING NEURAL MODELLING ENVIRONMENTS

Whilst a number of neural modelling software packages and
class libraries exist, as a rule they are aimed at modelling a
specific level of abstraction/realism. For example GENESIS [3],
CONICAL [8] and NEURON [9] allow the modelling of single
neurons and small networks with a high degree of biological
detail. PDP++ [1] allows the modelling of larger neural
networks, but places considerable constraints upon the level of
detail at which individual elements can be modelled. Specific-
level modelling is problematic, as it does not include support for
the systematic exploration of the effects of tightening or
loosening the realistic constraints, or for thoroughly exploring
the relative contributions of circuitry and cellular complexity in
emergent population behaviours.

It may be suggested that multi-level modelling could be
achieved by integrating the (discrete level) results obtained from
existing packages, so that, in effect, a number of packages would
cooperate to produce experimental results. Such an approach
would at best be extremely difficult, involving significant
investigator or programmer effort in modifying the outputs of
each source modelling environment to render them suitable for
the target environment. This effort would be essentially on a
'one-off' basis, and need to be repeated for each individual
experiment. It was deemed that the overheads of such an
approach were unacceptable, and no further effort was expended
on it.

Whilst each existing environment has contributed to the
advancement of neural modelling, their construction reflects
their medical-researcher and temporal origins, and does not
exemplify modern software engineering practice, leading to
problems with classic issues such as adaptability, extensibility
and portability. Incorporating new components or new
functionality into these packages, for example, involves
programming, a skill not necessarily associated with medical
researchers.

As the complexity of models increases due to, for instance,
large numbers of interacting components, performance impacts
on the researcher's ability to experiment. This may be attributed
in part to the fact that existing modelling environments (except
CONICAL) are interpreted rather than compiled, and in part to
the actual construction of the software itself. Lack of software
performance increases the exposure of experiments to system
failure, and impacts negatively on other users of the computing
equipment. In the event of failure, and in the absence of support
for persistence of results exhibited by the current environments,
it becomes necessary to start from the beginning if an
experiment if it is unexpectedly interrupted. Finally, with the
exception of PGENESIS, a parallel version of GENESIS which
requires a supercomputer to provide any real benefit, the
existing modelling packages have not been constructed to
provide support for performance enhancement through the use
of arrays of parallel processors.

4. NEU-MODEL ARCHITECTURE

The use of objects in modelling [19] has become
increasingly popular in the past decade, supported by the
definition of languages such as C++ [20] and Java [21]. The use
of objects in system construction allows designers to view
components (of systems being modelled) in terms of function,
abstracting over implementation details. This approach has the
dual benefits of reducing unnecessary complexity and
facilitating software re-use. Specification of such models has
been largely standardised by the use of Unified Modelling
Language (UML) [22]. Formalism within UML is defined in
[23]. Implementation of object-oriented models (programming)
is fundamentally different from the previously widely accepted
procedural approach [24] with emphasis on information hiding,
with objects being seen purely in terms of their procedural
interface.

Object-oriented software systems typically comprise
arbitrarily complex networks of objects, and construction of
objects themselves out of more fundamental objects. Thus a
system can be seen as comprising components that may
themselves be constructed from more fundamental components.
In this way the use of object-orientation for software systems
parallels the construction of structures found in nature. The
networks themselves may be different at different abstraction
levels, but their utility may be enhanced, particularly from the
aspect of component replacement, by viewing them in terms of
positions and the objects that occupy those positions [25] as
further developed in, for example, [26]. Modelling according to
this paradigm allows the required flexibility in terms of levels of
abstraction, with the additional benefit of complexity reduction
when complex components are replaced by (more simply
implemented but) functionally equivalent state machines (whose
behaviour mimics that of the replaced component).

Neu-Model has been constructed using modern object-
oriented design principles. In accordance with the latest
practice, the user view (with which the user interacts, typically a
graphical user interface or GUI) is separated from the model
implementation. The view and model entities may thus be
implemented using the respectively optimal programming
languages. For example the interpreted language Java provides
excellent portability, and is ideal for implementation of the view,
which requires a high degree of interaction with the host
operating system (OS), while the fully compiled C++, for which
portability is most a problem from the point of view OS
interaction, is ideal for the model to provide performance.
Communication between the view and the model is achieved
using message passing, provided by the OS if both view and
model execute on the same computer, or using a transport
mechanism such as CORBA [27] to exploit powerful computer
servers in a distributed environment.

The model itself is further decomposed into as a single
controller component and multiple, extensible (in number),
substitutable and adaptable neural components (some
CONICAL compartmental components have been used, others

are new with Neu-Model). Neural components may be
organised into arbitrarily complex networks, with the relative
orientation of each component defined using the Position
abstraction [25, 26]. This provides an architecture in which
components are substitutable in isolation from changes to the
network structure. Run-time binding allows researchers to
redefine or substitute components without the need for a full
system rebuild between experiments.

5. EVALUATION

The standard GENESIS single-level tutorials were
performed using Neu-Model, and the results matched empirical
data as well as GENESIS, confirming Neu-Model's
compatibility with the research-community accepted existing
system. For example Figure 1 shows the modelling of two
single compartment neurons (created as a pair of multi-
compartmental neurons with gated channels using the Hudgkin-
Huxley parameters connected with a delay link) connected along
a pathway with a 15msec attenuation delay when at 60 msec into
the simulation a current from a probe is injected into neuron1
(this is equivalent to demonstration 5 of the GENESIS
simulation library).

Figure 1. Two Neurons at the Same Abstraction Level.

Support for multi-level modelling was evaluated using a
number of combinations of elements at different abstraction
levels. For example Figure 2 shows the modelling of a pair of
neurons, one modelled using a compartmental model (using
Hudgkin-Huxley parameters as in Figure 1) and connected along
a pathway with a 15msec attenuation delay to a connectionist
style sigmoid neuron, when at 60 msec into the simulation a
series of pulses from a probe is injected into the compartmental
neuron. Notice that the behaviour of the sigmoid neuron differs
from that of the HH neuron, with differently shaped spikes and
more rapid return to rest state. Such a combination of
abstractions produced modelled results that had not previously
been achieveable.

Performance comparisons show that Neu-Model compares
well with the other popular modelling environments. Figure 3
shows that only CONICAL outperforms Neu-Model for a simple
two-node network. This is expected because, Neu-Model must
instantiate significantly more objects than CONICAL to achieve
the infrastructure for any simulation.

Membrane Voltage vs. Time

-100
-80
-60
-40
-20

0
20
40

50 60 70 80 90 100
msec

m
V Neuron1

Neuron2

Figure 2. Two Neurons at Different Abstraction Levels.

As shown by Figure 4, the infrastructure-object instantiation
overhead decreases with neural-network size, so that for larger
networks Neu-Model performance matches and eventually
outperforms that of all other systems (including CONICAL). It
should be noted that this level of performance and scaleability is
achieved while providing unmatched versatility.

Figure 3. Performance Comparison for Two-Neuron
Network (ms of processing time per cycle)

As further described in Section 6, Neu-Model is still in
development, and the GUI is as yet incomplete. This
necessitates the use of scripting language for model definition
(use of scripting is also required by the existing modelling
systems). Complexity of use of Neu-Model was measured in
terms of lines of script required to achieve equivalent models.
As shown in Figure 5, Neu-Model is significantly easier to use
than its competitors. It is expected that this advantage will be
extended when the GUI is complete.

6. FUTURE WORK

Given the fact that nervous system components 'learn' (their
behaviour is modified by previous events) it is possible that
technology such as that used to implement software agents [28]
or mobile agents [29] may be applicable. Software agents are
capable of learning and developing while their related structures,
the mobile agent, are independent entities sent out on the
Internet to research and return data and information. If agents
were applicable to this problem, an added benefit of their use
would be their ability to exploit computers providing arrays of
processing elements [30].

Figure 4. Comparison of Overhead and Model Complexity.

At present Neu-Model provides a textual user interface, with
users defining neural components using scripts, and output
provided in text files. The compute engine, however, has been
constructed to support message-based input, and construction of
a GUI interface to provide such input and visually display output
is in progress. Output, of course, may if required be directed to
some other module, for instance the output of one simulation
may be directed to form (part of) the input to another.

Other areas of future work include interfacing to message
transport mechanisms to support networks of simulator
instances, the introduction of arbitrarily-positioned probes to
inject and collect signals at various physical positions throught
the network of neural components, and importantly support for
persistence of results, allowing both restart after unexpected
system failure and electronic comparison of the results of
different abstraction levels.

0
10
20
30
40
50
60
70
80
90

100

Neu-Model Neuron Conical Genesis

Figure 5. Comparative Modelling Complexity.

7. CONCLUSION

This paper presents a new modelling environment designed
to assist neuroscientists in their quest for better knowledge of the
brain and its function. The environment, named Neu-Model,
provides explicit support for multi-level modelling, and is the
first environment to do so.

Neu-Model's.architecture incorporates the most recent
advances in object-oriented software engineering. It thus
provides a great deal of flexibility for the medical researcher,
and facilitates future modification end extension of its
functionality.

As demonstrated, Neu-Model is already able to duplicate
and extend on the functionality and performance of existing

0

0.01

0.02

0.03

0.04

0.05

Performance Comparison

Conical
Neu-Model
Neuron
Genesis

HH Neuron connected to a Connectionist Sigmoid
neuron

-100
-80
-60
-40
-20

0
20
40
60

50 60 70 80 90 100

HH Neuron
Sigmoid Neuron

Performance Overhead

0%

5%

10%

15%

20%

25%

Com plex ity of Ne uron

O
ve

rh
ea

d

modelling environments. Development is continuing, and will
be reported in the future literature.

REFERENCES

[1] Rumelhart, D.E., & McClelland, J. (1986)
"Parallel Distributed Processing: Explorations
in the Microstructure of Cognition. Vol1"
Cambridge Mass. MIT Press.

[2] Churchland, P. S. & Sejnowski, T. L. (1992)
"The Computational Brain", Cambridge Mass.
MIT Press.

[3] Bower, J.M., Beeman, D., (1995) "The book of
Genesis", Telos, Springer-Verlag.

[4] McCarthy, J. and Hayes, P. J. (1969) "Some
Philosophical Problems from the Standpoint of
Artificial Intelligence", Machine Intelligence,
4: pp463-502.

[5] DeSchutter, E., and Bower, J.M. (1994a) "An
Active Membrane Model of the Cerebellar
Purkinje Cell: I. Simulation of current clamps
in slice", J. Neurophysiol. 71, 375-400.

[6] Rolls, E. (1996) "A theory of hippocampal
function in memory" Hippocampus 6:601-620.

[7] Cervantes F., Weitzenfeld A (1996) " Multi-
Level Simulation Methodology: A
Computational and Experimental Approach to
Neural Systems"
http://pitts.rhon.itam.mx/English/Project/Multil
ev.htm

[8] Strout, J.J. (1996) "CONICAL: The
Computational Neuroscience Class Library"
http://cajalnt.ucsd.edu/jstrout/conical/

[9] Hines, M., (1994) "NEURON", in Neural
Network Simulation Environments, Editor J.
Skrzypek, Kluwer Academic Publishers.

[10] Rolls, E. (1996) "A theory of hippocampal
function in memory" Hippocampus 6:601-620.

[11] McClelland, J. & Goddard, N. (1996)
"Considerations arising from a complementary
learning systems perspective on hippocampus
and neocortex", Hippocampus 6:654-665.

[12] Marr D, and Poggio, T. (1976) "Cooperative
computation of stereo disparity." Science
194:283-287.

[13] Hasselmo, M. Wyble P., & Wallenstein (1996)
"Encoding and retrieval of episodic memories:
role of cholinergic and gabaergic modulation
in the hppocampus", Hippocampus 6:693-708.

[14] Klopp, J., Johnston, P., Halgren, E., Nenov, V.
(1999) "Wide-band spectral power fluctuations
characterize the response of simulated cortical
networks to increasing stimulus intensity".

[15] McCulloch, W.S. & Pitt, W.H. (1943) "A
logical calculus of ideas immanent in nervous
activity". Bull. Math. Biophysiscs 5:115-133.

[16] Rall, W. (1964) "Theoretical significance of
dendritic trees for neuronal input-output
relations". In: Neural Theory and Modeling.
Reiss, R. F. ed. Stanford University Press, pp.
73-97.

[17] Hodgkin, A. L. and Huxley, A.F. (1952d) "A
quantitive description of membrane current
and its application to conduction and
excitation in the nerve." J. of Physiol. 117:500-
44.

[18] Cervantes F., Weitzenfeld A (1996) " Multi-
Level Simulation Methodology: A
Computational and Experimental Approach to
Neural Systems"
http://pitts.rhon.itam.mx/English/Project/Multil
ev.htm

[19] Rumbaugh, J., Blaha, M., Premerlani, W. &
Eddy, F. (1991) "Object-Oriented Modelling
and Design" Prentice-Hall.

[20] Stroustrup, B. (1991) " The C++ Programming
Language, Second Edition", Addison-Wesley.

[21] Arnold, K. and Gosling, J. (1996) "The Java
Programming Language" The Java Series,
Reading, Mass.: Addison-Wesley.

[22] Booch, G., Rumbaugh, J., Jacobson, I. &
Rumbaugh, J. (1999) "The Unified Modelling
Language User Guide" Addison-Wesley.

[23] Warmer, J. & Kleppe, A. (1999) "The Object
Constraint Language: Precise Modelling with
UML" Addison-Wesley.

[24] Meyer, B. (1997) "Object-Oriented Software
Construction" Prentice-Hall.

[25] Aho, A., Hopcroft, J. & Ullman, J. (1983)
"Data Structures and Algorithms" Addison-
Wesley.

[26] Goldberg, A. & Robson, D. (1989) "Smalltalk-
80: The Language" Addison-Wesley.

[27] "CORBA 2.3.1/IIOP Specification", available
electronically from
http://www.omg.org/library/c2indx.html

[28] Sloman, A. "What sort of architecture is
required for a human-like agent?" invited talk
at Cognitive Modelling Workshop, AAAI96,
Portland Oregon.

[29] Vitek, J. & Tschudin, C. (1997) "Lecture Notes
in Computer Science 1222" Springer-Verlag.

[30] Fitzpatrick, S., Harmer, T., Stewart, A., Clint,
M. & Boyle, J. (1997) "The automated
transformation of abstract specifications of
numerical algorithms into efficient array
processor implementations" Science of
Computer Programming 28(1): 1-41.

http://www.omg.org/library/c2indx.html

	K
	KEYWORDS:
	ABSTRACT
	1.	INTRODUCTION
	2.	COMPUTATIONAL NEUROSCIENCE AND LEVELS OF MODELLING
	3.	EXISTING NEURAL MODELLING ENVIRONMENTS
	4.	NEU-MODEL ARCHITECTURE
	5.	EVALUATION
	6.	FUTURE WORK
	7.	CONCLUSION
	REFERENCES

