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ABSTRACT 

Neu-Model, an ongoing project aimed at developing a neural 
simulation environment that is extremely computationally 
powerful and flexible, is described.  It is shown that the use of 
good Software Engineering techniques in Neu-Model’s design 
and implementation is resulting in a high performance system 
that is powerful and flexible enough to allow rigorous 
exploration of brain function at a variety of conceptual levels. 

1. INTRODUCTION 

A recent development in the fields of Cognitive Science and 
Neuroscience has been the use of computational models as a 
means of understanding mental processes and brain dynamics  
[1; 2; 3].  The use of such models defines the sub-discipline of 
Computational Neuroscience, which aims to elucidate the 
mechanisms of neural information processing and population 
dynamics, through a methodology of incorporating biological 
data into complex mathematical models.  These models are to a 
greater or lesser degree inspired or constrained by the functional 
architecture of the brain, and the cells that comprise it.  For 
instance, sets of linked partial differential equations may be used 
to simulate the time and voltage dependent behaviours that are 
displayed in cellular membrane conductances, and which have 
been observed and described in the cellular electrophysiology 
literature.  Such models are used to simulate experimental 
results, generate novel hypotheses and provide insights into how 
the brain performs computations.  This type of methodology 
differs fundamentally from classical modelling approaches in 
computer science, specifically in the field of Artificial 
Intelligence [4], where the physical structure of the brain is 
ignored in efforts to duplicate its function. 

The field of Computational Neuroscience has concerned 
itself with modelling the brain at specific, but different, levels of 
abstraction, ranging from extremely biologically detailed models 
of single neurons (nerve cells) [5], to highly abstracted models 
focussing upon the computational properties of specific 
configurations of cellular circuitry [6].  Multi-level modelling 
[7] is an emerging approach which aims to bind different levels 
of abstraction, allowing a coherent and integrated investigation 
of brain function. 

A number of simulation environments currently exist [1, 3, 
8, 9], however, these model at a particular level of biological 
realism, and none of them allow a multi-level approach.  
Additionally, most were researcher-need specific and not 
engineered to produce compute-efficient solutions, an important 
issue because sufficient processing power is a major impediment 
in the field. 

From the Software Engineering perspective, a large and 
complex task of this kind provides an ideal opportunity to prove 
and extend the latest methodologies.  This paper describes Neu-
Model, an ongoing project aimed at developing a neural 
simulation environment that is extremely computationally 
powerful, and flexible enough to allow rigorous exploration of a 
variety of conceptual levels. 

2. COMPUTATIONAL NEUROSCIENCE AND LEVELS 
OF MODELLING 

Neural models are comprised of an array of simple 
processing elements ("neurons"), which are interconnected (ie. 
by "synapses"), and which represent dynamic parallel processing 
systems.  The field encompassing the use of such models has 
variously been labelled connectionism, artificial neural network 
modelling, realistic brain modelling and computational 
neuroscience - the choice of terminology most often been 
influenced by the degree of biological realism with which the 
neural models are constrained.  The choice of the two extremes 
of highly abstract models versus highly realistic models also 
tends to reflect the types of question being addressed.  Generally 
speaking this dichotomy can be considered as reflecting either: 

• top-down approaches to understanding the kinds 
of computations that might underlie specific 
mental processes, (ie. involved for instance in the 
storage and retrieval of memories, or the 
transformation of an array of light on the retina 
into a meaningful 3 dimensional scene) (ie. [10; 
11; 12]), or 

• bottom up approaches to understanding the types 
of specific cellular and sub-cellular processes that 
might effect population behaviours (ie. [13, 14]).   

The former type of modelling strategy usually involves an a 
priori computational theory of how a specific task might be 
performed, and then attempts to show how a simple neural 
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model might perform that computation.  This type of model's 
properties are typically predicated more upon the specific 
pattern of connectivity or circuitry than on the range of 
behaviour displayed by the individual processing elements, 
which is usually modelled as a simple input-output function 
[15]. Abstracted representations of neural activity may be 
modelled by simple linear or non-linear functions, which 
describe either activity/non-activity at any given moment, or a 
time-averaged gross activation level. 

At the more biologically constrained end of the spectrum 
(the latter strategy), models tend to have more complex 
processing elements and statistically constrained connectivity 
patterns that rely upon the existence of large numbers of 
elements to achieve their effects.  These models employ a 
methodology known as compartmental modelling, which is 
based upon sets of linked partial differential equations modelling 
the electrotonic properties of the cellular membrane [16], and 
the active time and voltage dependant behaviours of various 
ionic conductances across the cellular membrane [17].  These 
properties of cellular behaviour can be described using cable 
equations [16] which represent the passive electrotonic 
properties of the cell, in conjunction with linked non-linear 
generalised partial differential equations (PDEs) which describe 
the time and voltage dependent behaviours of active cellular 
mechanisms.  These PDEs take parameters describing known 
physiological measures and are "fitted" to observed 
physiological functions.  Values for parameters and fitting 
curves describing dynamic functions are taken from the cellular 
physiology literature. This modelling strategy allows an arbitrary 
level of complexity in terms of the explicit modelling of realistic 
dendritic tree structures and the inclusion of numerous 
parameters modelling the effects on the intracellular and 
extracellular conductances operating on varying temporal scales. 

The relative merits of these two approaches are clear.  
Abstract models are easy to understand and relatively 
computationally inexpensive but often it is hard to see what they 
might have to do with actual brain structure and function (apart 
from wishful thinking on the part of the modeller).  Realistic 
models are much less transparent, there is a greater number of 
variables and therefore a much larger behavioural state space, 
and they are much more computationally expensive than abstract 
models.  However they yield data that can be more directly 
compared with measures of real brain activity (such as EEG and 
single unit recordings).  Moreover, there is a much stricter 
isomorphism between the thing been modelled and the model 
itself. 

A methodological approach is emerging, not that takes a 
middle path between these extremes, but rather that takes a 
number of middle paths.  This approach is called multi-level 
modelling.  The aim is to use a combination of top down and 
bottom up modelling strategies that attempt to show 
isomorphisms between models at different levels of description, 
and that converge upon a coherent solution through the iterative 
application and relaxation of constraints (ie. [18]). 

3. EXISTING NEURAL MODELLING ENVIRONMENTS 

Whilst a number of neural modelling software packages and 
class libraries exist, as a rule they are aimed at modelling a 
specific level of abstraction/realism.  For example GENESIS [3], 
CONICAL [8] and NEURON [9] allow the modelling of single 
neurons and small networks with a high degree of biological 
detail.  PDP++ [1] allows the modelling of larger neural 
networks, but places considerable constraints upon the level of 
detail at which individual elements can be modelled.  Specific-
level modelling is problematic, as it does not include support for 
the systematic exploration of the effects of tightening or 
loosening the realistic constraints, or for thoroughly exploring 
the relative contributions of circuitry and cellular complexity in 
emergent population behaviours.  

It may be suggested that multi-level modelling could be 
achieved by integrating the (discrete level) results obtained from 
existing packages, so that, in effect, a number of packages would 
cooperate to produce experimental results.  Such an approach 
would at best be extremely difficult, involving significant 
investigator or programmer effort in modifying the outputs of 
each source modelling environment to render them suitable for 
the target environment.  This effort would be essentially on a 
'one-off' basis, and need to be repeated for each individual 
experiment.  It was deemed that the overheads of such an 
approach were unacceptable, and no further effort was expended 
on it. 

Whilst each existing environment has contributed to the 
advancement of neural modelling, their construction reflects 
their medical-researcher and temporal origins, and does not 
exemplify modern software engineering practice, leading to 
problems with classic issues such as adaptability, extensibility 
and portability.  Incorporating new components or new 
functionality into these packages, for example, involves 
programming, a skill not necessarily associated with medical 
researchers. 

As the complexity of models increases due to, for instance, 
large numbers of interacting components, performance impacts 
on the researcher's ability to experiment.  This may be attributed 
in part to the fact that existing modelling environments (except 
CONICAL) are interpreted rather than compiled, and in part to 
the actual construction of the software itself.  Lack of software 
performance increases the exposure of experiments to system 
failure, and impacts negatively on other users of the computing 
equipment.  In the event of failure, and in the absence of support 
for persistence of results exhibited by the current environments, 
it becomes necessary to start from the beginning if an 
experiment if it is unexpectedly interrupted.  Finally, with the 
exception of PGENESIS, a parallel version of GENESIS which 
requires a supercomputer to provide any real benefit, the 
existing modelling packages have not been constructed to 
provide support for performance enhancement through the use 
of arrays of parallel processors. 



4. NEU-MODEL ARCHITECTURE 

The use of objects in modelling [19] has become 
increasingly popular in the past decade, supported by the 
definition of languages such as C++ [20] and Java [21].  The use 
of objects in system construction allows designers to view 
components (of systems being modelled) in terms of function, 
abstracting over implementation details.  This approach has the 
dual benefits of reducing unnecessary complexity and 
facilitating software re-use.  Specification of such models has 
been largely standardised by the use of Unified Modelling 
Language (UML) [22].  Formalism within UML is defined in 
[23].  Implementation of object-oriented models (programming) 
is fundamentally different from the previously widely accepted 
procedural approach [24] with emphasis on information hiding, 
with objects being seen purely in terms of their procedural 
interface. 

Object-oriented software systems typically comprise 
arbitrarily complex networks of objects, and construction of 
objects themselves out of more fundamental objects.  Thus a 
system can be seen as comprising components that may 
themselves be constructed from more fundamental components.  
In this way the use of object-orientation for software systems 
parallels the construction of structures found in nature.  The 
networks themselves may be different at different abstraction 
levels, but their utility may be enhanced, particularly from the 
aspect of component replacement, by viewing them in terms of 
positions and the objects that occupy those positions [25] as 
further developed in, for example, [26].  Modelling according to 
this paradigm allows the required flexibility in terms of levels of 
abstraction, with the additional benefit of complexity reduction 
when complex components are replaced by (more simply 
implemented but) functionally equivalent state machines (whose 
behaviour mimics that of the replaced component). 

Neu-Model has been constructed using modern object-
oriented design principles.  In accordance with the latest 
practice, the user view (with which the user interacts, typically a 
graphical user interface or GUI) is separated from the model 
implementation.  The view and model entities may thus be 
implemented using the respectively optimal programming 
languages.  For example the interpreted language Java provides 
excellent portability, and is ideal for implementation of the view, 
which requires a high degree of interaction with the host 
operating system (OS), while the fully compiled C++, for which 
portability is most a problem from the point of view OS 
interaction, is ideal for the model to provide performance.  
Communication between the view and the model is achieved 
using message passing, provided by the OS if both view and 
model execute on the same computer, or using a transport 
mechanism such as CORBA [27] to exploit powerful computer 
servers in a distributed environment. 

The model itself is further decomposed into as a single 
controller component and multiple, extensible (in number), 
substitutable and adaptable neural components (some 
CONICAL compartmental components have been used, others 

are new with Neu-Model).  Neural components may be 
organised into arbitrarily complex networks, with the relative 
orientation of each component defined using the Position 
abstraction [25, 26].  This provides an architecture in which 
components are substitutable in isolation from changes to the 
network structure.  Run-time binding allows researchers to 
redefine or substitute components without the need for a full 
system rebuild between experiments. 

5. EVALUATION 

The standard GENESIS single-level tutorials were 
performed using Neu-Model, and the results matched empirical 
data as well as GENESIS, confirming Neu-Model's 
compatibility with the research-community accepted existing 
system.  For example Figure 1 shows the modelling of two 
single compartment neurons (created as a pair of multi-
compartmental neurons with gated channels using the Hudgkin-
Huxley parameters connected with a delay link) connected along 
a pathway with a 15msec attenuation delay when at 60 msec into 
the simulation a current from a probe is injected into neuron1 
(this is equivalent to demonstration 5 of the GENESIS 
simulation library). 

Figure 1.  Two Neurons at the Same Abstraction Level. 

Support for multi-level modelling was evaluated using a 
number of combinations of elements at different abstraction 
levels.  For example Figure 2 shows the modelling of a pair of 
neurons, one modelled using a compartmental model (using 
Hudgkin-Huxley parameters as in Figure 1) and connected along 
a pathway with a 15msec attenuation delay to a connectionist 
style sigmoid neuron, when at 60 msec into the simulation a 
series of pulses from a probe is injected into the compartmental 
neuron.  Notice that the behaviour of the sigmoid neuron differs 
from that of the HH neuron, with differently shaped spikes and 
more rapid return to rest state.  Such a combination of 
abstractions produced modelled results that had not previously 
been achieveable. 

Performance comparisons show that Neu-Model compares 
well with the other popular modelling environments.  Figure 3 
shows that only CONICAL outperforms Neu-Model for a simple 
two-node network.  This is expected because, Neu-Model must 
instantiate significantly more objects than CONICAL to achieve 
the infrastructure for any simulation. 
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Figure 2.  Two Neurons at Different Abstraction Levels. 

 

As shown by Figure 4, the infrastructure-object instantiation 
overhead decreases with neural-network size, so that for larger 
networks Neu-Model performance matches and eventually 
outperforms that of all other systems (including CONICAL).  It 
should be noted that this level of performance and scaleability is 
achieved while providing unmatched versatility. 

Figure 3.  Performance Comparison for Two-Neuron 
Network (ms of processing time per cycle) 

As further described in Section 6, Neu-Model is still in 
development, and the GUI is as yet incomplete.  This 
necessitates the use of scripting language for model definition 
(use of scripting is also required by the existing modelling 
systems).  Complexity of use of Neu-Model was measured in 
terms of lines of script required to achieve equivalent models.  
As shown in Figure 5, Neu-Model is significantly easier to use 
than its competitors.  It is expected that this advantage will be 
extended when the GUI is complete. 

6. FUTURE WORK 

Given the fact that nervous system components 'learn' (their 
behaviour is modified by previous events) it is possible that 
technology such as that used to implement software agents [28] 
or mobile agents [29] may be applicable.  Software agents are 
capable of learning and developing while their related structures, 
the mobile agent, are independent entities sent out on the 
Internet to research and return data and information.  If agents 
were applicable to this problem, an added benefit of their use 
would be their ability to exploit computers providing arrays of 
processing elements [30]. 

Figure 4.  Comparison of Overhead and Model Complexity. 

At present Neu-Model provides a textual user interface, with 
users defining neural components using scripts, and output 
provided in text files.  The compute engine, however, has been 
constructed to support message-based input, and construction of 
a GUI interface to provide such input and visually display output 
is in progress.  Output, of course, may if required be directed to 
some other module, for instance the output of one simulation 
may be directed to form (part of) the input to another. 

Other areas of future work include interfacing to message 
transport mechanisms to support networks of simulator 
instances, the introduction of arbitrarily-positioned probes to 
inject and collect signals at various physical positions throught 
the network of neural components, and importantly support for 
persistence of results, allowing both restart after unexpected 
system failure and electronic comparison of the results of 
different abstraction levels. 
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Figure 5.  Comparative Modelling Complexity. 

7. CONCLUSION 

This paper presents a new modelling environment designed 
to assist neuroscientists in their quest for better knowledge of the 
brain and its function.  The environment, named Neu-Model, 
provides explicit support for multi-level modelling, and is the 
first environment to do so. 

Neu-Model's.architecture incorporates the most recent 
advances in object-oriented software engineering.  It thus 
provides a great deal of flexibility for the medical researcher, 
and facilitates future modification end extension of its 
functionality. 

As demonstrated, Neu-Model is already able to duplicate 
and extend on the functionality and performance of existing 
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modelling environments.  Development is continuing, and will 
be reported in the future literature. 
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