
Unified Support for Stability and Bulk Data in a Persistent Store
M. G. Ashton and F. A. Henskens

Department of Computer Science & Software Engineering
University of Newcastle

N.S.W. 2308
email: mashton@ozemail.com.au, henskens@cs.newcastle.edu.au

KEYWORDS:

Persistence, concurrency-control, stability, bulk data

ABSTRACT

The results of research into the use of a unified set of
mechanisms to support store stability and concurrency control is
presented. It is shown that the use and extension of the data
structures already maintained by the system to support stability
provides support for a novel approach to provision of
cooperative concurrency control in persistent systems.

1. INTRODUCTION

Conventional computer systems implement a dichotomy of
storage mechanisms: a file store that provides a durable
repository allowing data to exist after the creating program has
ceased execution (such data is termed long-term data), and
virtual memory which provides a repository for data during
program execution (such data is termed short-term data). In
typical conventional systems it is the responsibility of the
programmer to manage the conversion of data between the
transient form suitable for virtual memory and the permanent
form suitable for the file store. This conversion uses up CPU
cycles, and can result in data misinterpretation leading to
reduced data protection.

Persistent systems, on the other hand, remove the distinction
between long and short-term data by providing a single set of
mechanisms for the management of data regardless of its
lifetime. Work on persistence to date has largely concentrated
on implementation of stores that adhere to the properties of
orthogonal persistence defined in [1]. A much smaller body of
work has investigated applications which exploit the benefits of
persistence. Persistent stores have long been touted as
alternatives to conventional database systems, but to our
knowledge no-one, with the possible exception of IBM with the
AS/400 [2], has actually implemented a database-style
application interface to a persistent store. Such an interface
would rely on the underlying persistent store providing a durable
repository for data rather than having to provide this durability
itself, as occurs with conventional database systems.
Unwillingness to adopt persistent stores as a basis for bulk data
management systems has in part been due to doubts about the
performance of such stores.

Previously [3] the authors presented results showing that a
properly designed persistent system could match a conventional
system for basic bulk data storage. This paper presents the

results of research into the use of a unified set of mechanisms to
support (typically operating system provided) store stability and
(typically application-level provided) concurrency control.

2. SUPPORT FOR STABILITY IN PERSISTENT
STORES

A persistent store is said to be stable if it automatically
recovers to a consistent state after a failure that has prevented
orderly system shutdown. Stability in persistent stores is
typically provided using operations called checkpoints that flush
all modified data currently held in main memory to disk, and
atomically create a snapshot of the store at that moment. Early
stability schemes, for example [4], checkpointed the entire store
at once, requiring processing on the store to cease during a
checkpoint operation In a multi-user store involving multiple
nodes this would result in unacceptable degradation of
performance. Accordingly, systems have been developed which
checkpoint parts of the store independently (for example [5]).
The stable state of such a store is the collection of these stable
parts. Checkpointing parts of the store independently however,
creates the possibility of logical inconsistencies between data.
Modified data from one object may influence the way a process
modifies data in some other object. As a result the two objects
have a dependency relationship that must be considered when
checkpointing either of them. Such dependencies have been
described using sets of clients in Casper [5], and more recently
using directed graphs of entities [6].

These directed graphs, termed Directed Dependency Graphs
(DDGs) are maintained by the operating system as follows:

• An → edge is used to specify the dependency
relationship between two entities. E1 → E2
means that E1 depends on E2. → is transitive, but
not symmetric i.e. if (E1 → E2) and (E2 → E3),
then it is implied that (E1 → E3), but E1 → E2
does not imply E2 → E1.

• The right hand side of a dependency relation may
depend on the left hand side either through
transitivity (for instance if E1 → E2, we may also
have E2 → E3 and E3 → E1 which implies that
E2 → E1), or when a process has modified an
object, which results in two unidirectional edges
with different directions between the two entities.

• In the case of a write operation which leads to a
pair of dependencies, instead of indicating two

mailto:mashton@ozemail.com.au
mailto:henskens@cs.newcastle.edu.au

unidirectional edges (E1 → E2 and E2 ← E1), we
use the notation E1 ↔ E2.

• When a process belonging to a DDG reads a
modified object or modifies an object that belongs
to another DDG, the two DDGs are merged using
one of the above edges to create a single larger
graph.

• When a process reads an unmodified object,
nothing is added to any DDG.

• When a process P1 reads a modified object O1,
the edge P1 → O1 is added to the DDG(s)
including P1 and O1.

• When a process P1 modifies an object O1, the
edge P1 ↔ O1 is added to the DDG(s) including
P1 and O1.

• As shown in figure 1, an → edge represents both
 S
→ (i.e. in terms of checkpoint or stabilise

dependency) and R
← (i.e. in terms of roll-back

dependency). Thus E1 → E2 implies that
checkpoint of E1 propagates to E2 (but checkpoint
of E2 does not propagate to E1) and that roll-back
of E2 propagates to E1 (but roll-back of E1 does
not propagate to E2). A consequence of this is
that if E1 ↔ E2, checkpoint and roll-back of
either entity propagates to the other.

• A DDG shrinks when a set of dependent entities is
checkpointed or reverts to its last stable state (rolls
back). Once a checkpoint or roll-back operation is
initiated for an entity E, the operation propagates
to each entity that is reachable from E in the DDG
to which E belongs. Then, because each involved
entity is now stable, all edges attached to them are
removed.

• At any instant each entity belongs to one and only
one dependency graph. To find the set of entities
dependent on any entity, it is sufficient to find the
location of the entity in its graph and then, subject
to the kind of operation, traverse the directed
graph starting from the entity. Thus the set of
dependent entities may differ for entities in the
same DDG.

Dependency

Graph

Stabilising

Graph

Roll-back

Graph

→
 S
→ R

←

← S
←

 R
→

↔ S← and
 S
→

 R
→ and R←

Figure 1: The relationship between edges in DDGs, Stabilise
Graphs and Roll-back Graphs

With appropriate hardware support, it is possible to lazily
construct DDGs by updating them to record dependency data at
the completion of each process time slice [7]. This assumes that
dependency is recorded at the virtual page rather than the
individual object level, thus utilising and extending hardware
that is already typically present to support virtual memory
management. Conventional virtual memory management
requires the presence of status data indicating whether the
content of an in-memory page has been modified since the page
was loaded (i.e. whether the page is dirty), allowing the system
to determine whether the page must be flushed to disk before the
page frame it occupies can be re-used. In order to efficiently
support stabilise and roll-back operations, it is necessary to
distinguish between in-memory pages that are unstable and
unflushed (DIRTY) and unstable but flushed (MODIFIED). A
page would have MODIFIED state if, for instance, as part of
virtual memory management it had been loaded, modified,
flushed and then reloaded.

Pages may remain in main memory for a period
encompassing many process activations. The M_ACCESSED
status data allows detection of process access to modified object
data during the process' current time-slice. This status data is set
for a page if the page is accessed while the MODIFIED status
for the page is set. Dependencies between a process and the
objects containing pages with the M_ACCESSED status set are
represented by the addition of appropriate → edges to the
dependency graph at the conclusion of the process' period of
activation. All M_ACCESSED status data must be clear at the
commencement of a process time-slice; this may be achieved in
a single operation using appropriate hardware.

The inclusion of WRITTEN status data allows detection of
object data modifications made by the current process. This data
is distinct from the MODIFIED status described previously
because it describes the modification behaviour of the current
process rather than the status of the virtual page. The
WRITTEN status is set together with the MODIFIED and
DIRTY status, but is cleared as part of the dependency graph
update at the conclusion of the process time-slice. In contrast
the MODIFIED status is cleared at the next object checkpoint

and the DIRTY status is cleared when the page is flushed to
disk. Pages with the WRITTEN status set cause the inclusion of
an appropriate ↔ dependency graph edge. Operation of the
described status data is shown in Figure 2.

3. CONCURRENCY CONTROL

Most descriptions of concurrency control concentrate on the
transaction model used for database systems. This model
represents one extreme of a spectrum of concurrency control
mechanisms ranging from isolation to cooperation. The
database transaction model enforces isolation and hides
concurrency from the user. At the other extreme concurrency is
achieved by cooperation between users. It is not clear which
model of concurrency control is most suited to persistent
systems. Some researchers [8] regard the cooperative model as
the most appropriate, while others [9] prefer to offer a choice of
models.

For over twenty years, the transaction has been
acknowledged as the central abstraction in preventing
concurrent applications from corrupting the contents of a
database through errors such as lost update, dirty read or
unrepeatable read [10]. The original concurrency control
algorithm, strict two-phase locking with shared and exclusive
locks, is still widely used in practice, since it is simple to
implement and guarantees serializability. Many alternative
algorithms have been proposed and, in commercial systems
these include variants of key-range locking to avoid phantoms,
and escrow reads to improve throughput on hotspot data, as
discussed in [11]. New algorithms continue to appear. For
example, a constrained shared lock has been proposed in [12].
Besides algorithms which offer alternative implementations for
the traditional transaction semantics (ACID properties), there
have been many new models proposed, for use in advanced
application domains where cooperation is needed between
concurrent activities. A detailed survey of these new ideas is
found in [13].

Concurrency control techniques ensure that a set of
concurrent transactions produce the same result as if they had
executed serially, and may be broadly categorised as either
optimistic or pessimistic. Pessimistic schemes typically use
locks to prevent other concurrent transactions from accessing
objects that are being used by the locking transaction.
Optimistic schemes [14] proceed without locking but examine
the transaction before it is committed, to determine its
serialisability, leading to a decision to commit or abort. Both
approaches have advantages and disadvantages: the pessimistic
approach may cause transactions to deadlock, whilst the
optimistic approach may require rollback of transactions after a
considerable amount of work has been done.

Status Data

Operation

DIRTY MODIFIED M_ACCESSED WRITTEN

Unmodifie
d page

retrieved

Cleared Cleared Cleared Cleared

Modified
page

retrieved

Cleared Set Cleared Cleared

Process
reads data
from page

Unchan
ged

Unchanged Copy modified Unchanged

Process
writes to

page

Set Set Set Set

End of
process

time-slice

Unchan
ged

Unchanged Cleared Cleared

Page
flushed

Cleared Unchanged Unchanged Unchanged

Object
checkpoint

Cleared Cleared Unchanged Unchanged

Figure 2:Effect of operations on object status data.

Optimistic concurrency control was proposed to avoid
locking overheads, possibility of deadlock, congestion caused by
locking in virtual memory systems and unnecessary acquiring
and holding of locks perceived to be problems with pessimistic
control schemes. It was proposed [14] that a transaction should
be viewed in terms of three phases:

• A read phase, in which all objects read or written
by a transaction are copied into a private work area
associated with that transaction,

• A validation phase, in which it is established
whether applying the modifications achieved
during the read phase to the global store would
result in loss of integrity of the data in that store,
and

• Based on the result of the validation phase, a write
phase in which modified objects in the private
work area are copied to the global store and made
globally visible.

In order to achieve validation every transaction T has an
associated Readset(T) comprising objects read by the
transaction and Writeset(T) comprising objects modified by
the transaction. The transaction manager also records the
temporal start of the read phase StartR(T), the end of the

read phase FinishR(T) and the end of the write phase
(FinishW(T) for every transaction.

A transaction Tj is validated if one of the following
conditions is satisfied for every Ti such that
FinishW(Ti) < FinishW(Tj):

1. Ti completes its write phase before Tj starts its read
phase, i.e. Ti is already serially ahead of Tj because it
completed before Tj started.

2. Ti completes its write phase (i.e. FinishW(Ti) occurs)
before Tj starts its write phase and Writeset(Ti) does
not intersect with Readset(Tj) (i.e. writeset(Ti) ∩
readset(Tj) = Φ). In effect, logically Tj might as well
have started after Ti completed.

3. Ti completes its read phase before Tj completes its read
phase and Writeset(Ti) does not intersect with the
union of Readset(Tj) and Writeset(Tj) (i.e. writeset(Ti)
∩ (readset(Tj) ∪ writeset(Tj)) = Φ). In effect Tj has no
unrepeatable reads because of the behaviour of Ti.

It is apparent from the above description that data must be
maintained for every committed transaction Ti to enable
comparison with Writeset(Tj) as required by the validation
phases of temporally overlapping transactions. Additionally, a
transaction executes almost to completion (in fact everything is
completed except the commit) before inability to commit is
detected. This occurs because transactions work in isolation of
each other in their work area until the validation phase (and even
then a transaction in read-phase works in isolation from other
validating transactions).

As shown in Section 4, the DDGs, maintained to support
stability, record dependency data that provides an alternate
means of achieving optimistic concurrency control, and in some
cases signal transactions to abort earlier than would occur with
the requirement for a validation phase described above. Further,
every transaction that completes to the end of the read phase (as
defined above) is guaranteed success in the validation phase,
removing the necessity for that phase.

4. SYSTEM SUPPORT FOR CONCURRENCY
CONTROL

As described in Section 2, the system records a process'
access behaviour during each time quantum, and uses this data
to perform a DDG update as part of the overhead of the process
switch that occurs at the cessation of the quantum. With the
exception of clean read operations (the act of reading an object
that has not be modified since it was last stabilised), all object
accesses of interest to a transaction manager are recorded by the
system as part of the stability mechanism. The — DDG edge
provides support for recording of such clean read operations
(note the edge is undirected because it does not represent a
dependency-creating operation), making it possible to
incorporate transaction control into the existing stability system
as follows:

• At the commencement of a transaction, the
initiating process must exist in a single-node
DDG. If that is not the case, the process must
initiate a stabilise operation, with isolation being
the consequence. The process is then part of a
DDG associated by the system with the fledgling
transaction.

• As the process (and any parallel processes
incorporated in the transaction) interacts with
objects in the store, →, ←, ↔ and — edges are
used to incorporate the entities into the transaction
DDG. Construction of the graph is achieved lazily
using access data collected as described above
during each process time quantum.

• During each transaction DDG update, the system
analyses any graph merge operations and
determines whether the merge causes a violation
of transaction isolation and whether any
transaction must be aborted as a result.

• A transaction that completes, i.e. whose DDG
could be constructed without a need for
transaction roll-back, commits by stabilising its
transaction DDG.

It should be noted here that this early roll-back optimistic
concurrency control technique updates data in the global store
on a real-time basis. There is no private work area associated
with each transaction. Data modifications can be rolled back if
required as a consequence of the stability technique (for example
shadow paging) implemented for the store.

Updates to the DDG at the completion of a (transaction-
implementing) process time quantum take the form of insertion
of one of the edges →, ↔ or — between the graph node
representing the process and a data object from the store. The
system makes decisions about the effect of inclusion of such an
edge in the DDG based on the following:

• Edges have a precedence order —, →, ↔ with
respect to any process (transaction) – object pair.
As a result insertion of an edge to the right in this
order will replace an extant edge to the left. An
extant edge to the right will not be replaced by an
edge to the left, indeed an edge to the left will not
be inserted if it occurs after an edge to the right.

• If there are no existing edges between any process
node and the object, the appropriate edge is added
and the object belongs to (and becomes a node in)
the same DDG as the process.

• If all prior edge(s) between other process nodes
and the node representing the object are to nodes
in the same DDG as the process, the appropriate
edge is inserted subject to the precedence rule.

• If one or more edges exist between other process
nodes and the node representing the object, and
these process nodes do not belong to the same
DDG as the process, the system either inserts the
appropriate edge or causes transaction abort (roll-
back) operation(s) as described below.
Transaction roll-back operations are achieved by
appropriate DDG roll-backs.

In the following discussion of the effect of DDG edge
insertion we assume the existence of an object On and
transactions Ta, the transaction creating the new edge, and Tb,
some other transaction. Decisions on the validity of Ta's edge-
producing access are made by considering the edge to be
inserted Ea with respect to each individual existing edge between
On and each other concurrent transaction Tb, as follows (this
discussion assumes that the system has already determined that
there is no existing edge of higher or equal priority to Ea
between On and Ta):

(1) If there is no edge between Ta and On the new edge
is inserted.

(2) If there is an existing — edge between Tb and On
and the access by Ta was a read, a new — edge is
inserted between the node representing On and the
node representing Ta.

(3) If there is an existing — edge between Tb and On
and the access by Ta was a write, a policy decision
is made. Either a new ↔ edge is inserted between
the node representing On and the node
representing Ta, and Tb is forced to abort (roll-
back), as a consequence removing the — edge, or
Ta is forced to roll-back.

(4) If there is an existing →, edge between Tb and On
and the access by Ta was a read, a new → edge is
inserted between the node representing On and the
node representing Ta. Because the system has
already eliminated the possibility of an existing ↔
edge (i.e. of higher priority) between On and Ta,
there must also be an existing ↔ edge between On
and some other transaction Tb.. Subject to Tb
committing before Ta, Ta is allowed to continue.

(5) If there is an existing →, edge between Tb and On
and the access by Ta was a write, because the
system has already eliminated the possibility of an
existing ↔ edge (i.e. of equal priority) between On
and Ta, there is an existing ↔ edge between On
and some other transaction Tx in which case all
transactions with edges to On must be aborted
(rolled back).

(6) If there is an existing ↔, edge between Tb and On
and the access by Ta was a read, a new → edge is
inserted between the node representing On and the

node representing Ta. Subject to Tb committing
before Ta, Ta is allowed to continue.

(7) If there is an existing ↔, edge between Tb and On
and the access by Ta was a write, both transactions
must be aborted (rolled back).

A consequence of the described system support is that it is
possible to distinguish whether a read operation involving a
modified object occurred prior to ('clean') or after ('dirty') the
object had been modified. As shown above in points (4) and
(6), Ta is permitted to continue after a 'dirty' read subject to the
future behaviour of the writing process Tb. Point (3) shows that,
on the update, any previously (i.e. 'clean') reading transaction
must abort, avoiding the occurrence of unrepeatable read. This
is in contrast to conventional optimistic schemes that evaluate
ability to commit based on read and write sets with no temporal
properties (a 'dirty' read is not possible in conventional
schemes). As a result the reading transaction always aborts after
the writing transaction commits. A consequence of this ability
to read data modified by an as-yet-uncommitted transaction
(subject to (4)) allows interleaving of transactions under certain
circumstances with a subsequent improvement in concurrency.

The presented concurrency control support allows a scheme
that performs as well as conventional concurrency control for
read – read situations, and outperforms conventional schemes
for write – read situations as discussed in the previous
paragraph. For conventional optimistic concurrency control
systems, read – write and write – write situations result in ability
to commit for the first transaction to achieve that stage, and
abort for the second transaction. In this newly-presented
scheme, read – write is managed as described in (3), with one of
the involved transactions being forced to roll-back and the other
continuing. The decision on which option prevails is based on
issues such as respective DDG sizes and transaction longevity
with effect similar to that of conventional schemes. Write –
write is managed as described in (7), which appears to be more
draconian than the conventional approach. It should be noted,
however, that the conventional approach will certainly abort one
of the transactions after all involved have run to completion.
The new scheme aborts both as soon as the conflict is detected,
potentially reducing the incidence of unproductive work.
Subject to granularity of concurrency it may be possible to allow
the second writer to continue while aborting the initial writer.
This issue, together with others such as measuring the
comparative merits of the traditional and new approaches is the
subject of further work.

5. CONCLUSION

Stability schemes for persistent stores ensure that data in the
store remains consistent even after the store has been shut down
in an uncontrolled way after a hardware or system software
failure (in contrast to orderly system shutdown that ensures the
most recent, possibly in-core, version of data is written to stable
disk storage prior to removal of power from core memory). This
is achieved by regularly writing snapshots of all or part of the

store to disk during system operation in operations called
checkpoints. If parts of the store are checkpointed
independently, it is necessary to consider the dependencies that
are created between entities in the store during processing when
scheduling checkpoint operations. The use of Directed
Dependency Graphs (DDGs) has been shown to improve the
efficiency of stability mechanisms by reducing the cascade effect
for checkpoint (stabilise) and roll-back operations.

In this paper it was shown that the use and extension of the
DDG data structures already maintained by the system provides
support for a novel approach to provision of cooperative
concurrency control in persistent systems. The use of a single
mechanism to support both stability and concurrent data access
removes the duplication present in other systems, thus
enhancing system performance. The technique implements a
form of optimistic concurrency control that matches or improves
on the efficiency of conventional implementations in most
situations.

REFERENCES

[1] Atkinson, M. and Morrison, R. "Persistent
System Architectures", Proceedings of the
Third International Workshop on Persistent
Object Systems, ed J. Rosenberg and D. M.
Koch, Springer-Verlag, pp. 73-97, 1989.

[2] Soltis, F. "Inside the AS/400", Duke Press,
Loveland, Colorada, 1995.

[3] Henskens, F. and Ashton, M. “Persistent
Databases That Perform?”, Proceedings,
IASTED International Conference on Software
Engineering SE ‘97, IASTED/ACTA Press,
ISBN 0-88986-244-3, San Francisco, U.S.A.,
pp. 168-172, November 1997.

[4] Rosenberg, J., Henskens, F. A., Brown, A. L.,
Morrison, R. and Munro, D. “Stability in a
Persistent Store Based on a Large Virtual
Memory”, Springer-Verlag and British
Computer Society, pp. 229-245, 1990.

[5] Vaughan, F., Basso, T. L., Dearle, A., Marlin,
C. and Barter, C. “Casper: a Cached
Architecture Supporting Persistence”,
Computing Systems, 5(3):337-359, 1992.

[6]
[7] Jalili, R. and Henskens, F. A. "Entity

Dependency in Stable Distributed Persistent
Stores", Proceedings of the 28th Hawaii
International Conference on System Sciences,
vol 2, Hawaii, U.S.A., IEEE, pp. 665-674,
1995.

[8] Henskens, F. A., Koch, D. M., Jalili, R. and
Rosenberg, J. "Hardware Support for Stability
in a Persistent Architecture", Workshops in
Computing: Proceedings of the Sixth
International Workshop on Persistent
Operating Systems, Tarascon, France, ed M.
Atkinson, D. Maier and V. Banzaken, Springer-
Verlag and British Computer Society, ISBN 3-
540-19912-8, pp. 387-399, 1994.

[9] Lindstrom, A. G., "User-level Memory
Management and Kernel Persistence in the
Grasshopper Operating System", Ph.D Thesis,
Basser Department of Computer Science,
University of Sydney, 1996.

[10] Munro, D. S., "On the Integration of
Concurrency, Distribution and Persistence",
Ph.D Thesis, Department of Mathematical and
Computational Sciences, University of St.
Andrews, 1993.

[11] K.Eswaran, J. Gray, R. Lorie, I. Traiger, “The
Notion of Consistency and Predicate Locks in
Database Systems” in Comm. ACM 19(11):
624-633, November 1976.

[12] J. Gray and A. Reuter, Transaction Processing,
Morgan Kaufmann 1993.

[13] D. Agrawal and A. El Abbadi, “Locks with
Constrained Sharing” in Proceeedings ACM
PODS: 85-93, April 1991.

[14] A. Elmagarmid (ed), Database Transaction
Models for Advanced Applications, Morgan
Kauffman 1992.

[15] Kung, H. and Robinson, J. "On Optimistic
Methods for Concurrency Control", ACM
Transactions on Database Systems, 6(2), pp.
213-226, 1981.

	K
	KEYWORDS:
	ABSTRACT
	1.	INTRODUCTION
	2.	SUPPORT FOR STABILITY IN PERSISTENT STORES
	3.	CONCURRENCY CONTROL
	4.	SYSTEM SUPPORT FOR CONCURRENCY CONTROL
	5.	CONCLUSION
	REFERENCES

