
Unified Support for Stability and Bulk Data in a Persistent Store 
M. G. Ashton and F. A. Henskens 

Department of Computer Science & Software Engineering 
University of Newcastle 

N.S.W. 2308 
email: mashton@ozemail.com.au, henskens@cs.newcastle.edu.au 

KEYWORDS: 

Persistence, concurrency-control, stability, bulk data 

ABSTRACT 

The results of research into the use of a unified set of 
mechanisms to support store stability and concurrency control is 
presented.  It is shown that the use and extension of the data 
structures already maintained by the system to support stability  
provides support for a novel approach to provision of 
cooperative concurrency control in persistent systems. 

1. INTRODUCTION 

Conventional computer systems implement a dichotomy of 
storage mechanisms: a file store that provides a durable 
repository allowing data to exist after the creating program has 
ceased execution (such data is termed long-term data), and 
virtual memory which provides a repository for data during 
program execution (such data is termed short-term data).  In 
typical conventional systems it is the responsibility of the 
programmer to manage the conversion of data between the 
transient form suitable for virtual memory and the permanent 
form suitable for the file store.  This conversion uses up CPU 
cycles, and can result in data misinterpretation leading to 
reduced data protection. 

Persistent systems, on the other hand, remove the distinction 
between long and short-term data by providing a single set of 
mechanisms for the management of data regardless of its 
lifetime.  Work on persistence to date has largely concentrated 
on implementation of stores that adhere to the properties of 
orthogonal persistence defined in [1].  A much smaller body of 
work has investigated applications which exploit the benefits of 
persistence.  Persistent stores have long been touted as 
alternatives to conventional database systems, but to our 
knowledge no-one, with the possible exception of IBM with the 
AS/400 [2], has actually implemented a database-style 
application interface to a persistent store.  Such an interface 
would rely on the underlying persistent store providing a durable 
repository for data rather than having to provide this durability 
itself, as occurs with conventional database systems.  
Unwillingness to adopt persistent stores as a basis for bulk data 
management systems has in part been due to doubts about the 
performance of such stores. 

Previously [3] the authors presented results showing that a 
properly designed persistent system could match a conventional 
system for basic bulk data storage.  This paper presents the 

results of research into the use of a unified set of mechanisms to 
support (typically operating system provided) store stability and 
(typically application-level provided) concurrency control. 

2. SUPPORT FOR STABILITY IN PERSISTENT 
STORES 

A persistent store is said to be stable if it automatically 
recovers to a consistent state after a failure that has prevented 
orderly system shutdown.  Stability in persistent stores is 
typically provided using operations called checkpoints that flush 
all modified data currently held in main memory to disk, and 
atomically create a snapshot of the store at that moment.  Early 
stability schemes, for example [4], checkpointed the entire store 
at once, requiring processing on the store to cease during a 
checkpoint operation  In a multi-user store involving multiple 
nodes this would result in unacceptable degradation of 
performance.  Accordingly, systems have been developed which 
checkpoint parts of the store independently (for example [5]).  
The stable state of such a store is the collection of these stable 
parts.  Checkpointing parts of the store independently however, 
creates the possibility of logical inconsistencies between data.  
Modified data from one object may influence the way a process 
modifies data in some other object.  As a result the two objects 
have a dependency relationship that must be considered when 
checkpointing either of them.  Such dependencies have been 
described using sets of clients in Casper [5], and more recently 
using directed graphs of entities [6]. 

These directed graphs, termed Directed Dependency Graphs 
(DDGs) are maintained by the operating system as follows: 

• An → edge is used to specify the dependency 
relationship between two entities.  E1 → E2 
means that E1 depends on E2.  → is transitive, but 
not symmetric i.e. if (E1 → E2) and (E2 → E3 ), 
then it is implied that (E1 → E3), but E1 → E2 
does not imply E2 → E1. 

• The right hand side of a dependency relation may 
depend on the left hand side either through 
transitivity (for instance if E1 → E2, we may also 
have E2 → E3 and E3 → E1 which implies that 
E2 → E1), or when a process has modified an 
object, which results in two unidirectional edges 
with different directions between the two entities. 

• In the case of a write operation which leads to a 
pair of dependencies, instead of indicating two 
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unidirectional edges (E1 → E2 and E2 ← E1), we 
use the notation E1 ↔ E2. 

• When a process belonging to a DDG reads a 
modified object or modifies an object that belongs 
to another DDG, the two DDGs are merged using 
one of the above edges to create a single larger 
graph. 

• When a process reads an unmodified object, 
nothing is added to any DDG. 

• When a process P1 reads a modified object O1, 
the edge P1 → O1 is added to the DDG(s) 
including P1 and O1. 

• When a process P1 modifies an object O1, the 
edge P1 ↔ O1 is added to the DDG(s) including 
P1 and O1. 

• As shown in figure 1, an → edge represents both 
 S
→  (i.e. in terms of checkpoint or stabilise 

dependency) and  R
←  (i.e. in terms of roll-back 

dependency).  Thus E1 → E2 implies that 
checkpoint of E1 propagates to E2 (but checkpoint 
of E2 does not propagate to E1) and that roll-back 
of E2 propagates to E1 (but roll-back of E1 does 
not propagate to E2).  A consequence of this is 
that if E1 ↔ E2, checkpoint and roll-back of 
either entity propagates to the other. 

• A DDG shrinks when a set of dependent entities is 
checkpointed or reverts to its last stable state (rolls 
back).  Once a checkpoint or roll-back operation is 
initiated for an entity E, the operation propagates 
to each entity that is reachable from E in the DDG 
to which E belongs.  Then, because each involved 
entity is now stable, all edges attached to them are 
removed. 

• At any instant each entity belongs to one and only 
one dependency graph.  To find the set of entities 
dependent on any entity, it is sufficient to find the 
location of the entity in its graph and then, subject 
to the kind of operation, traverse the directed 
graph starting from the entity.  Thus the set of 
dependent entities may differ for entities in the 
same DDG. 
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Figure 1: The relationship between edges in DDGs, Stabilise 
Graphs and Roll-back Graphs 

With appropriate hardware support, it is possible to lazily 
construct DDGs by updating them to record dependency data at 
the completion of each process time slice [7].  This assumes that 
dependency is recorded at the virtual page rather than the 
individual object level, thus utilising and extending hardware 
that is already typically present to support virtual memory 
management.  Conventional virtual memory management 
requires the presence of status data indicating whether the 
content of an in-memory page has been modified since the page 
was loaded (i.e. whether the page is dirty), allowing the system 
to determine whether the page must be flushed to disk before the 
page frame it occupies can be re-used.  In order to efficiently 
support stabilise and roll-back operations, it is necessary to 
distinguish between in-memory pages that are unstable and 
unflushed (DIRTY) and unstable but flushed (MODIFIED).  A 
page would have MODIFIED state if, for instance, as part of 
virtual memory management it had been loaded, modified, 
flushed and then reloaded.   

Pages may remain in main memory for a period 
encompassing many process activations.  The M_ACCESSED 
status data allows detection of process access to modified object 
data during the process' current time-slice.  This status data is set 
for a page if the page is accessed while the MODIFIED status 
for the page is set.  Dependencies between a process and the 
objects containing pages with the M_ACCESSED status set are 
represented by the addition of appropriate → edges to the 
dependency graph at the conclusion of the process' period of 
activation.  All M_ACCESSED status data must be clear at the 
commencement of a process time-slice; this may be achieved in 
a single operation using appropriate hardware. 

The inclusion of WRITTEN status data allows detection of 
object data modifications made by the current process.  This data 
is distinct from the MODIFIED status described previously 
because it describes the modification behaviour of the current 
process rather than the status of the virtual page.  The 
WRITTEN status is set together with the MODIFIED and 
DIRTY status, but is cleared as part of the dependency graph 
update at the conclusion of the process time-slice.  In contrast 
the MODIFIED status is cleared at the next object checkpoint 



and the DIRTY status is cleared when the page is flushed to 
disk.  Pages with the WRITTEN status set cause the inclusion of 
an appropriate ↔ dependency graph edge.  Operation of the 
described status data is shown in Figure 2. 

3. CONCURRENCY CONTROL 

Most descriptions of concurrency control concentrate on the 
transaction model used for database systems.  This model 
represents one extreme of a spectrum of concurrency control 
mechanisms ranging from isolation to cooperation.  The 
database transaction model enforces isolation and hides 
concurrency from the user.  At the other extreme concurrency is 
achieved by cooperation between users.  It is not clear which 
model of concurrency control is most suited to persistent 
systems.  Some researchers [8] regard the cooperative model as 
the most appropriate, while others [9] prefer to offer a choice of 
models. 

For over twenty years, the transaction has been 
acknowledged as the central abstraction in preventing 
concurrent applications from corrupting the contents of a 
database through errors such as lost update, dirty read or 
unrepeatable read [10].  The original concurrency control 
algorithm, strict two-phase locking with shared and exclusive 
locks, is still widely used in practice, since it is simple to 
implement and guarantees serializability.  Many alternative 
algorithms have been proposed and, in commercial systems 
these include variants of key-range locking to avoid phantoms, 
and escrow reads to improve throughput on hotspot data, as 
discussed in [11].  New algorithms continue to appear. For 
example, a constrained shared lock has been proposed in [12].  
Besides algorithms which offer alternative implementations for 
the traditional transaction semantics (ACID properties), there 
have been many new models proposed, for use in advanced 
application domains where cooperation is needed between 
concurrent activities.  A detailed survey of these new ideas is 
found in [13]. 

Concurrency control techniques ensure that a set of 
concurrent transactions produce the same result as if they had 
executed serially, and may be broadly categorised as either 
optimistic or pessimistic.  Pessimistic schemes typically use 
locks to prevent other concurrent transactions from accessing 
objects that are being used by the locking transaction.  
Optimistic schemes [14] proceed without locking but examine 
the transaction before it is committed, to determine its 
serialisability, leading to a decision to commit or abort.  Both 
approaches have advantages and disadvantages: the pessimistic 
approach may cause transactions to deadlock, whilst the 
optimistic approach may require rollback of transactions after a 
considerable amount of work has been done. 

 

Status Data 

Operation 

DIRTY MODIFIED M_ACCESSED WRITTEN 

Unmodifie
d page 

retrieved 

Cleared Cleared Cleared Cleared 

Modified 
page 

retrieved 

Cleared Set Cleared Cleared 

Process 
reads data 
from page 

Unchan
ged 

Unchanged Copy modified Unchanged 

Process 
writes to 

page 

Set Set Set Set 

End of 
process 

time-slice 

Unchan
ged 

Unchanged Cleared Cleared 

Page 
flushed 

Cleared Unchanged Unchanged Unchanged 

Object 
checkpoint 

Cleared Cleared Unchanged Unchanged 

Figure 2:Effect of operations on object status data. 

Optimistic concurrency control was proposed to avoid 
locking overheads, possibility of deadlock, congestion caused by 
locking in virtual memory systems and unnecessary acquiring 
and holding of locks perceived to be problems with pessimistic 
control schemes.  It was proposed [14] that a transaction should 
be viewed in terms of three phases: 

• A read phase, in which all objects read or written 
by a transaction are copied into a private work area 
associated with that transaction, 

• A validation phase, in which it is established 
whether applying the modifications achieved 
during the read phase to the global store would 
result in loss of integrity of the data in that store, 
and 

• Based on the result of the validation phase, a write 
phase in which modified objects in the private 
work area are copied to the global store and made 
globally visible. 

In order to achieve validation every transaction T has an 
associated Readset(T) comprising objects read by the 
transaction and Writeset(T) comprising objects modified by 
the transaction.  The transaction manager also records the 
temporal start of the read phase StartR(T), the end of the 



read phase FinishR(T) and the end of the write phase 
(FinishW(T) for every transaction. 

A transaction Tj is validated if one of the following 
conditions is satisfied for every Ti such that 
FinishW(Ti) < FinishW(Tj): 

1. Ti completes its write phase before Tj starts its read 
phase, i.e. Ti is already serially ahead of Tj because it 
completed before Tj started. 

2. Ti completes its write phase (i.e. FinishW(Ti) occurs) 
before Tj starts its write phase and Writeset(Ti) does 
not intersect with Readset(Tj) (i.e. writeset(Ti) ∩ 
readset(Tj) = Φ).  In effect, logically Tj might as well 
have started after Ti completed. 

3. Ti completes its read phase before Tj completes its read 
phase and Writeset(Ti) does not intersect with the 
union of Readset(Tj) and Writeset(Tj) (i.e. writeset(Ti) 
∩ (readset(Tj) ∪  writeset(Tj)) = Φ).  In effect Tj has no 
unrepeatable reads because of the behaviour of Ti. 

It is apparent from the above description that data must be 
maintained for every committed transaction Ti to enable 
comparison with Writeset(Tj) as required by the validation 
phases of temporally overlapping transactions.  Additionally, a 
transaction executes almost to completion (in fact everything is 
completed except the commit) before inability to commit is 
detected.  This occurs because transactions work in isolation of 
each other in their work area until the validation phase (and even 
then a transaction in read-phase works in isolation from other 
validating transactions). 

As shown in Section 4, the DDGs, maintained to support 
stability, record dependency data that provides an alternate 
means of achieving optimistic concurrency control, and in some 
cases signal transactions to abort earlier than would occur with 
the requirement for a validation phase described above.  Further, 
every transaction that completes to the end of the read phase (as 
defined above) is guaranteed success in the validation phase, 
removing the necessity for that phase. 

4. SYSTEM SUPPORT FOR CONCURRENCY 
CONTROL 

As described in Section 2, the system records a process' 
access behaviour during each time quantum, and uses this data 
to perform a DDG update as part of the overhead of the process 
switch that occurs at the cessation of the quantum.  With the 
exception of clean read operations (the act of reading an object 
that has not be modified since it was last stabilised), all object 
accesses of interest to a transaction manager are recorded by the 
system as part of the stability mechanism.  The — DDG edge 
provides support for recording of such clean read operations 
(note the edge is undirected because it does not represent a 
dependency-creating operation), making it possible to 
incorporate transaction control into the existing stability system 
as follows: 

• At the commencement of a transaction, the 
initiating process must exist in a single-node 
DDG.  If that is not the case, the process must 
initiate a stabilise operation, with isolation being 
the consequence.  The process is then part of a 
DDG associated by the system with the fledgling 
transaction. 

• As the process (and any parallel processes 
incorporated in the transaction) interacts with 
objects in the store, →, ←, ↔ and — edges are 
used to incorporate the entities into the transaction 
DDG.  Construction of the graph is achieved lazily 
using access data collected as described above 
during each process time quantum. 

• During each transaction DDG update, the system 
analyses any graph merge operations and 
determines whether the merge causes a violation 
of transaction isolation and whether any 
transaction must be aborted as a result. 

• A transaction that completes, i.e. whose DDG 
could be constructed without a need for 
transaction roll-back, commits by stabilising its 
transaction DDG. 

It should be noted here that this early roll-back optimistic 
concurrency control technique updates data in the global store 
on a real-time basis.  There is no private work area associated 
with each transaction.  Data modifications can be rolled back if 
required as a consequence of the stability technique (for example 
shadow paging) implemented for the store. 

Updates to the DDG at the completion of a (transaction-
implementing) process time quantum take the form of insertion 
of one of the edges →, ↔ or — between the graph node 
representing the process and a data object from the store.  The 
system makes decisions about the effect of inclusion of such an 
edge in the DDG based on the following: 

• Edges have a precedence order —, →, ↔ with 
respect to any process (transaction) – object pair.  
As a result insertion of an edge to the right in this 
order will replace an extant edge to the left.  An 
extant edge to the right will not be replaced by an 
edge to the left, indeed an edge to the left will not 
be inserted if it occurs after an edge to the right. 

• If there are no existing edges between any process 
node and the object, the appropriate edge is added 
and the object belongs to (and becomes a node in) 
the same DDG as the process. 

• If all prior edge(s) between other process nodes 
and the node representing the object are to nodes 
in the same DDG as the process, the appropriate 
edge is inserted subject to the precedence rule. 



• If one or more edges exist between other process 
nodes and the node representing the object, and 
these process nodes do not belong to the same 
DDG as the process, the system either inserts the 
appropriate edge or causes transaction abort (roll-
back) operation(s) as described below.  
Transaction roll-back operations are achieved by 
appropriate DDG roll-backs. 

In the following discussion of the effect of DDG edge 
insertion we assume the existence of an object On and 
transactions Ta, the transaction creating the new edge, and Tb, 
some other transaction.  Decisions on the validity of  Ta's edge-
producing access are made by considering the edge to be 
inserted Ea with respect to each individual existing edge between 
On and each other concurrent transaction Tb, as follows (this 
discussion assumes that the system has already determined that 
there is no existing edge of higher or equal priority to Ea 
between On and Ta): 

(1) If there is no edge between Ta and On the new edge 
is inserted. 

(2) If there is an existing — edge between Tb and On 
and the access by Ta was a read, a new — edge is 
inserted between the node representing On and the 
node representing Ta. 

(3) If there is an existing — edge between Tb and On 
and the access by Ta was a write, a policy decision 
is made.  Either a new ↔ edge is inserted between 
the node representing On and the node 
representing Ta, and Tb is forced to abort (roll-
back), as a consequence removing the — edge, or 
Ta is forced to roll-back. 

(4) If there is an existing →, edge between Tb and On 
and the access by Ta was a read, a new → edge is 
inserted between the node representing On and the 
node representing Ta.  Because the system has 
already eliminated the possibility of an existing ↔ 
edge (i.e. of higher priority) between On and Ta, 
there must also be an existing ↔ edge between On 
and some other transaction Tb..  Subject to Tb 
committing before Ta, Ta is allowed to continue. 

(5) If there is an existing →, edge between Tb and On 
and the access by Ta was a write, because the 
system has already eliminated the possibility of an 
existing ↔ edge (i.e. of equal priority) between On 
and Ta, there is an existing ↔ edge between On 
and some other transaction Tx in which case all 
transactions with edges to On must be aborted 
(rolled back). 

(6) If there is an existing ↔, edge between Tb and On 
and the access by Ta was a read, a new → edge is 
inserted between the node representing On and the 

node representing Ta.  Subject to Tb committing 
before Ta, Ta is allowed to continue. 

(7) If there is an existing ↔, edge between Tb and On 
and the access by Ta was a write, both transactions 
must be aborted (rolled back). 

A consequence of the described system support is that it is 
possible to distinguish whether a read operation involving a 
modified object occurred prior to ('clean') or after ('dirty') the 
object had been modified.  As shown above in points (4) and 
(6), Ta is permitted to continue after a 'dirty' read subject to the 
future behaviour of the writing process Tb.  Point (3) shows that, 
on the update, any previously (i.e. 'clean') reading transaction 
must abort, avoiding the occurrence of unrepeatable read.  This 
is in contrast to conventional optimistic schemes that evaluate 
ability to commit based on read and write sets with no temporal 
properties (a 'dirty' read is not possible in conventional 
schemes).  As a result the reading transaction always aborts after 
the writing transaction commits.  A consequence of this ability 
to read data modified by an as-yet-uncommitted transaction 
(subject to (4)) allows interleaving of transactions under certain 
circumstances with a subsequent improvement in concurrency. 

The presented concurrency control support allows a scheme 
that performs as well as conventional concurrency control for 
read – read situations, and outperforms conventional schemes 
for write – read situations as discussed in the previous 
paragraph.  For conventional optimistic concurrency control 
systems, read – write and write – write situations result in ability 
to commit for the first transaction to achieve that stage, and 
abort for the second transaction.  In this newly-presented 
scheme, read – write is managed as described in (3), with one of 
the involved transactions being forced to roll-back and the other 
continuing.  The decision on which option prevails is based on 
issues such as respective DDG sizes and transaction longevity 
with effect similar to that of conventional schemes.  Write – 
write is managed as described in (7), which appears to be more 
draconian than the conventional approach.  It should be noted, 
however, that the conventional approach will certainly abort one 
of the transactions after all involved have run to completion.  
The new scheme aborts both as soon as the conflict is detected, 
potentially reducing the incidence of unproductive work.  
Subject to granularity of concurrency it may be possible to allow 
the second writer to continue while aborting the initial writer.  
This issue, together with others such as measuring the 
comparative merits of the traditional and new approaches is the 
subject of further work. 

5. CONCLUSION 

Stability schemes for persistent stores ensure that data in the 
store remains consistent even after the store has been shut down 
in an uncontrolled way after a hardware or system software 
failure (in contrast to orderly system shutdown that ensures the 
most recent, possibly in-core, version of data is written to stable 
disk storage prior to removal of power from core memory).  This 
is achieved by regularly writing snapshots of all or part of the 



store to disk during system operation in operations called 
checkpoints.  If parts of the store are checkpointed 
independently, it is necessary to consider the dependencies that 
are created between entities in the store during processing when 
scheduling checkpoint operations.  The use of Directed 
Dependency Graphs (DDGs) has been shown to improve the 
efficiency of stability mechanisms by reducing the cascade effect 
for checkpoint (stabilise) and roll-back operations. 

In this paper it was shown that the use and extension of the 
DDG data structures already maintained by the system provides 
support for a novel approach to provision of cooperative 
concurrency control in persistent systems.  The use of a single 
mechanism to support both stability and concurrent data access 
removes the duplication present in other systems, thus 
enhancing system performance.  The technique implements a 
form of optimistic concurrency control that matches or improves 
on the efficiency of conventional implementations in most 
situations. 
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