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Abstract

The Grasshopper operating system provides a
flexible environment for conducting research into
orthogonal persistence.  In particular, it allows
user-level software to perform memory management
so that new techniques may be investigated without
having to modify or even reboot the kernel.  We
describe the facilities provided to support this and
show how they are used by both the kernel and
user-level software.

Introduction

In a conventional operating system two abstrac-
tions of data access and storage are provided: virtual
memory and files.  Data in virtual memory may be
directly accessed but does not outlast the computa-
tion that created it.  On the other hand, data in files
must be accessed using system calls but may last
for an arbitrary length of time.

A system that supports orthogonal persistence
unifies virtual memory and the file system to pro-
vide a single abstraction of data storage and access.
This is motivated by the realisation that data should
be accessible in a uniform manner regardless of its
creator, longevity or type [5] .  The chief advantage
of persistence is that it significantly eases the pro-
grammer’s task when sharing of arbitrary data struc-
tures between different programs (or different invo-
cations of the same program) is required.

For example, consider a graph structure that
must be accessed by programs other than its creator.
In a conventional system, this sharing is achieved
by the transforming the graph into a ‘flat’ form
suitable for the file system or a database.  Any
other program wishing to use it must then access
the file or database and reconstruct the graph from
the flattened form.  In a persistent system, this
transformation is unnecessary.  The graph exists in
its original form for as long as it is needed.  Thus,
both the creator and other programs access it with
equal ease.

A number of early systems [7, 22, 28]  provided
an abstraction of data storage and access called the
single–level store.  While these systems did not
provide true orthogonal persistence, they did remove
the distinction between long and short term data.
This idea was both simple and powerful but did not
find its way into the mainstream due to weaknesses
in other parts of the system or overdependence on
custom hardware.

A true persistent system [2, 6, 11, 24]  extends
the notion of a single-level store by providing data
stability, which is the ability to restore data to a
consistent state after the system crashes or is shut-

down [25] .  Single-level stores could recover data
but they did not guarantee consistency.
Conventional systems can also recover data, even
sometimes to a consistent state, but only if it is in
a file or a database.  In an orthogonally persistent
system a uniform abstraction is provided and so all
data is stabilised, not just that data that is in a file
or a database.  Stability does not mean that all cur-
rent changes to data can be recovered.  Rather, it
means that the system maintains some consistent
state to which it can revert in the face of failure.
When required, a checkpoint occurs that forces the
saved consistent state to reflect the current state of
the system ensuring that not too much is lost if the
system crashes.  This is normally achieved using
logging [4]  or some shadowing technique [19] .

Most persistent systems are implemented either
on top of a conventional operating system or em-
ploy specialised hardware.  The disadvantages of the
first approach are inefficiency and poor operating
system support for user–level memory management
[14] .  The second approach, while promising, lim-
its the possibility of distributing the system to in-
terested parties.  A third alternative is to implement
a system that runs directly on conventional hard-
ware.

There are a number of systems that take this
approach [8, 9, 10, 21] .  All of these systems are,
at least originally, research oriented and tend to em-
phasise different areas.  Clouds, for example, was
constructed to investigate distributed computation
while Alpha emphasises real-time applications.
The Grasshopper system, being developed jointly
by the Universities of Adelaide and Sydney, is pri-
marily a platform for conducting research into is-
sues directly related to persistence.  These include
how persistence is provided in a distributed envi-
ronment, how causal dependencies are tracked to en-
sure data consistency, and how persistence may be
exploited for both constructing applications and
improving efficiency.

One of the most important issues in a persistent
system is how the persistent store is managed.
Persistent data management encompasses two tasks.
The first is to move data between backing store,
which provides resilience, and main memory, which
provides efficient access.  The second is to maintain
the consistency of the persistent store.  If the
abstraction is to remain truly uniform, these tasks
must be carried out in a way that is totally
transparent to applications using the persistent
store.

The importance of data management in persis-
tent systems makes it an active area of research in
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much the same way as file systems are an active
area of research in conventional operating systems.
To allow for such research to be conducted,
Grasshopper provides mechanisms that allow per-
sistent data management to be conducted by user-
level software.  This means that new ideas may be
tested without having to alter the kernel.  Similar
facilities have been provided in a number of con-
ventional systems but in the context of virtual
memory management [1, 15, 29]  and file systems
[20, 23] .

The aim of this paper is to describe data man-
agement in Grasshopper [13]   In particular, it de-
scribes the facilities provided for performing data
management in user mode and gives some examples
of how they might be used.

Overview of Grasshopper

Hardware.  Grasshopper is targeted at a hard-
ware base that consists of a number of conventional
workstations connected by a local area network.
Each workstation, or node, is assumed to consist of
one or more processors, some physical memory,
and zero or more disks.  A processor may only di-
rectly access the memory of the node to which it
belongs.  If a processor wishes to access data in
remote memory, a copy must be made into local
memory by passing messages over the network.

Hardware support for memory management is
assumed to be based on fixed sized pages.  For the
purposes of this paper it is assumed that a software-
filled translation lookaside buffer(TLB) is provided.
One of the properties of TLBs is that they can only
hold a finite number of entries.  When an access is
made to a page for which no entry exists an excep-
tion, called a TLB miss, is raised.  When this oc-
curs, the system must determine whether the page
is memory resident or not.  If it is, the TLB can be
updated and the access can continue.  If it is not, a
copy of the page must be placed in main memory.
The detection of an access to non memory-resident
page is called a page fault.

In common with other distributed systems,
Grasshopper has a distributed kernel.  Each node in
the network has a copy of the kernel, called that
node’s local kernel,  which co-operates with the lo-
cal kernels of other nodes to provide a single, logi-
cal system.  The basic abstractions provided to
users are containers, loci, invocation, capabilities
and mapping.

Containers.  Containers are an abstraction of
data storage and access.  They are passive, persistent
entities that provide a means for storing data.
Further, they provide an environment for the execu-
tion of any number (from zero up) of concurrent ac-
tivities.  A typical container contains data and code
to manipulate that data.

Loci .  Loci (from locus of execution) are an
abstraction of sequential execution.  Each locus’ is
basically a set of registers and some other system-
related data such as priority and resource usage.  A
locus’ addressing environment is defined by its host
container, which provides both the code and data
that it needs to carry out computation.

Invocation.  Grasshopper is a procedure-ori-
ented or object-thread-based system [10, 17] .  This
means that a locus need not be tied to its host con-
tainer for its entire lifetime.  Instead, it may move

to another container by invoking it.  Invoking a
container is very similar to calling a procedure—pa-
rameters may be passed and the locus resumes from
the same spot when it returns from the invocation.
It differs from calling a procedure in that the in-
voked container becomes the locus’ host container
and so provides a whole new addressing environ-
ment.  This means that the locus can no longer ac-
cess the contents of the container from which the
invocation occurred.

When a locus invokes a container, the point at
which it begins executing is determined by the con-
tainer’s invocation point.  Each container can have
only one invocation point; if it offers many ser-
vices, one of the invocation parameters can be used
to choose between them.

Figure 1 illustrates an example of the basic ab-
stractions.  There are three containers, whose invo-
cation points are represented by black squares, and
two loci.  Locus 1 starts in container a.  It then
moves to b and thence c by invocation and then re-
turns to b.  Concurrently, locus 2 starts in con-
tainer a and then invokes b.  Note that the loci are
not confined to a single container and that each con-
tainer may have many loci executing in it concur-
rently.

The invocation mechanism is extremely impor-
tant in Grasshopper since it is used to provide
hardware-protected abstract data types(ADTs).  Each
instance of an ADT is a single container whose op-
erations are accessed by invocation.  For example,
the traditional abstraction of a file could be imple-
mented in Grasshopper as a container with five op-
erations: open, close, read, write and seek.  When a
locus needed to perform an operation on a file, it
would simply invoke it specifying the appropriate
operation.

Languages that provide abstract data types rely
on the compiler to enforce protection.  By contrast,
Grasshopper enforces protection at the hardware
level.  This has the important implication that the
kernel itself can be presented as a number of ADT
instances whose services are accessed by invocation.
This means that the distinction between kernel- and
user-level services is totally transparent.

Invocation is also important because it is ide-
ally suited to distributed computing.  If a locus in-
vokes a container that resides on a remote node, the
kernel may transparently migrate the locus to that
node or it may bring the container to the local node.
The decision as to which option is taken is based
on factors such as the load on each node and the
expected cost of migrating the container.  Since
invocation is a network transparent operation it is
immaterial to the locus which of these the kernel
chooses.

Figure 1: Containers and Loci
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Capabilities.  Capabilities are the sole means
of referencing and protecting entities in Grasshopper
[12] .  Whenever the code executed by a locus calls
for the manipulation of another object, a capability
must be presented.  A capability is a system-
protected object that serves to identify an entity and
to define what operations the holder may perform
on it.  Of main interest to this paper is the fact that
capabilities provide a location independent way of
referencing entities.  Since the kernel maintains the
correspondence between capabilities and entities, the
user need not be aware of an entity’s location.

Mapping.  One of the chief advantages of per-
sistent systems is that they allow sharing of arbi-
trary data structures between different programs.  In
Grasshopper, sharing can be achieved in two ways.
The first is by modelling the data structure as an

abstract data type and putting it and the code to ma-
nipulate it in a container that may be accessed by
invocation.  It is expected that this method will be
used when protection is a priority.

The second method of sharing data is by map-
ping, which provides direct access to the contents of
a container by making parts of it visible in another
container.  Mapping allows, for example, instances
of abstract data types to share code rather than
having to have a their own separate copy.  

Mapping in Grasshopper differs from similar
features in other systems in two major ways.  First,
mappings may overlap each other.  The last
mapping made at a particular address overrides any
others.  Second, mappings are not restricted to one
level.  For example, in Figure 2 address b in C1
corresponds to address d in C2, which corresponds
to address e in C3.  This means that reading b in
C1 will in fact return the contents of e in C3.

All loci in a container perceive the same address
space including any mappings that have been made.
In some cases it is desirable to provide a locus with
its own private data which no other locus can per-
ceive.  To satisfy this need, Grasshopper provides
invocation mappings, which take precedence over
any mappings in the host container and are only
perceived by the locus for which they are performed.

This allows, for example, each locus to have its
own stack space with the stacks of all loci
occupying the same address range within the host
container.  This technique both simplifies multi-
threaded programming and provides a useful security
mechanism unavailable in conventional systems.

Large Containers.  For some applications a
32 bit address space, which is typical of conven-
tional hardware, is not large enough to hold all the
required data.  To accommodate such large data sets,
the design of Grasshopper does not restrict container
addresses to be the same size as the hardware-
supported virtual addresses.  For example, the
Grasshopper prototype is implemented on Sun 3s,
which are based on the Motorola 68020 32-bit pro-
cessor but the kernel defines container addresses to
be 64 bits.

Having containers that are too large to be ad-
dressed directly by the hardware immediately poses a
problem.  One solution is to use pointer swizzling
techniques [27] .  Another is to use mapping.
Figure 3 illustrates the latter method, which is to
map inaccessible portions of one container into an
accessible portion of another container.  Thus, the
hardware supported virtual address space acts as a
window on the larger container address space.

Figure 3: Accessing a Large Container

Data Management in Grasshopper

One of the most important issues in the design
of Grasshopper is how the container abstraction is
implemented.  The two key issues are how to pro-
vide loci with direct, instruction-level access to
container data and how to maintain the resilience
and consistency of that data.

The techniques used to address these issues are
an active area of research.  So that research into
these techniques may be carried out in a flexible
manner, the kernel does not wholly implement the
container abstraction.  Rather, it co-operates with
user-level entities called container managers that
provide essential services related to a container’s
data such as moving data from disk to physical
memory and maintaining data stability.  A con-
tainer manager is simply a user-level container that
conforms to a common interface defined by the ker-
nel.  When the kernel requires some aspect of data
management to be performed on a container it in-
vokes that container’s manager.

When a container is created a manager must be
specified.  It is possible to change a container’s
manager at a later stage, as discussed below, and so
this initial manager is called its default manager.

Figure 4 illustrates an example of user-level
data management.  The locus in container a accesses
a page that is not resident in memory.  This causes
a page fault that is handled by the kernel’s

Figure 2: Mapping
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exception handler.  The kernel then finds the con-
tainer’s manager, container b, and invokes it re-
questing that it service the page fault.  The manager
uses the facilities described below to obtain a copy
of the data from backing store and place it in physi-
cal memory so that the access may continue.

Figure 4: Handling a Page Fault

Note that when an exception is caused by a lo-
cus the kernel can simply use it to invoke the man-
ager.  Such a kernel-initiated invocation is called a
forced invoke since it is not a result of an explicit
invoke operation and is not controlled by the locus.
The advantage of performing a forced invoke is that
the exception is handled at the priority of the fault-
ing locus.

There are number of advantages gained by hav-
ing data management relegated to user-level.  The
first and most important for Grasshopper is that
new techniques may be implemented and evaluated
without having to modify or even reboot the kernel.
This means that experiments may be conducted
with almost no impact on the rest of the system.
The second advantage is that much complexity is
removed from the kernel making it both easier to
write and maintain.

Some interesting possibilities for user-level data
management are container managers that compress
and/or encrypt data before it is moved to disk, data
managers that dynamically adapt page replacement
and prefetching policies to data access patterns and
data managers that perform concurrent garbage col-
lection.  Clearly, without the ability to implement
these policies at user-level, the kernel would soon
become a monolith that would be difficult to main-
tain, extend and debug.

For container managers to perform the services
required of them they must have a certain degree of
control over physical memory, backing store, and
address translation information.  This goal is con-
strained by the need to protect managers and the data
of the containers they manage from other managers.
Thus, it is not satisfactory to let managers
indiscriminately alter any part of physical memory
or disk.  Instead, they must be constrained to use
only those parts which they have been allocated.

The approach taken by Grasshopper is to pro-
vide a number of kernel-implemented abstract data
types that model the underlying hardware.  Instances
of these abstract data types are simply containers
which are accessed by invocation.  The three main

abstract data types used specifically by managers are
disks, physical page sets and local container
descriptors(LCDs).  Disks are an abstraction that
allow managers to access physical disks in a
controlled manner, physical page sets are used by
managers to manipulate physical memory, and
LCDs are used to store address translation informa-
tion such as the correspondence between virtual and
physical addresses.

The following sections describe the responsibil-
ities of container managers, the responsibilities of
the kernel, and the facilities provided to managers to
perform data management.  Following this, an
example is given to illustrate the use of these facil-
ities.

User-Level Data Management.

All aspects of the data in a container are the re-
sponsibility of that container's manager.  A man-
ager is simply a user-level container that is invoked
by the kernel whenever it requires the following
data management services to be performed on its
behalf:

• handling page faults

• handling access violations

• performing page discard

• performing stabilisation

A page fault occurs when a locus attempts to
access data that is not resident in the local memory
of the node on which the locus executes.  Such an
access causes an exception to be raised by the
node’s memory management hardware.  In response
to a page fault, the kernel invokes the container’s
manager specifying at what address, in which con-
tainer and on what node the fault occurred.  It is the
managers responsibility to retrieve a copy of the
data from backing store and place it in the local
memory of the faulting node.

Access violations occur when a locus attempts,
for example, to write to a container address for
which writing is disallowed.  When an access viola-
tion occurs the container’s manager is invoked by
the kernel with parameters specifying the address
and the type of the attempted access.  The manager
may handle the violation in any way that it sees fit.
There are a variety of applications for which detec-
tion of access violations are important [3] .

At some point in time the local memory of a
node will be filled with copies of pages from vari-
ous containers.  When this occurs, servicing of
page faults cannot proceed until some of the mem-
ory is freed.  When the kernel detects that this situ-
ation has arisen it invokes one or more managers
requesting that they discard a number of pages on
its behalf.  The choice of which pages are discarded
is left to the individual managers allowing them to
implement any algorithm they choose.  This is par-
ticularly useful when the traditional least-recently-
used algorithm is inappropriate [15, 26] .

The kernel is responsible for maintaining sys-
tem-wide stability.  When checkpoints occur it de-
termines which containers need to be stabilised to
ensure consistency then invokes the appropriate
managers.  It is up to the manager to use any pol-
icy it chooses to fulfil such requests.  The tech-
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niques by which stability is achieved are beyond the
scope of this paper and the reader is referred to [25] .

Kernel-Level Data Management

The kernel is responsible for dispatching data
management requests to container managers and
providing the abstractions that managers use to ser-
vice these requests.

To dispatch requests, for example when a locus
causes a page fault or an access violation, the kernel
must determine which container manager to invoke.
This task is complicated by the presence of
mappings.  For example, in Figure 2 address b in
C1 corresponds to address e in C3.  This means that
a page fault at b in C1 would have to be handled by
C3’s manager.  The container to which an address
eventually maps is called its base container.  The
address within the base container to which it
corresponds is called its base address.  Thus, b’s
base container is C3 and its base address is e.

The kernel encapsulates all mapping informa-
tion in a container called the mapping graph.  The
mapping graph is an abstract data type that may be
manipulated by invoking the following operations:

• cont_map(cap dest,
cont_offset dest_offset, cap src,
cont_offset src_addr, cont_offset len)

• cont_unmap(cap  cont, cont_offset addr)

• cont_invocation_map(cap locus,
cap dest, cont_offset dest_addr, cap src,
cont_offset src_addr, cont_offset len)

• cont_invocation_unmap(cap locus,
cap cont, cont_offset addr)

• cont_translate(cap cont, cap locus,
cont_offset addr) returns (cap base_cont,
cont_offset base_addr)

cont_map maps the region from dest_addr to
dest_addr+len-1 in the container referred to by the
capability dest to the region src_addr to src_addr
+len-1 in container referred to by src.  Any data that
was visible in this region is now hidden.

cont_unmap undoes the topmost mapping in
the container referred to by cont that includes the
address addr.  Any data that was previously obscured
by the mapping becomes visible.

cont_invocation_map performs a map in
the same way as cont_map with the exception
that only the locus specified by the capability locus
perceives the mapping.

cont_invocation_unmap removes any in-
vocation mapping made for the specified locus at
the given address.

cont_translate traverses the mapping graph
from address addr in the container referred to by cont
taking in to account any invocation mappings made
for the specified locus.  It returns the base address
and a reference to the base container.

The mapping graph is mainly used by the ker-
nel to determine base containers and addresses.  For
example, in Figure 2 if a page fault occurred at ad-
dress b in C1, the kernel would invoke
cont_translate and find that the base container is
C3 and the base address is e.  It would then invoke
C3’s manager to service the page fault.

Note that all operations on the mapping graph
are performed subject to the permissions embodied

in the capabilities presented.  This prevents arbi-
trary loci from altering the mapping graph unless
they been given permission to do so.

Kernel-Provided Facilities for User-Level
Data Management

Physical Page Sets.  When a page fault
occurs on a node it the responsibility of the man-
ager to place a copy of the data in the physical
memory of the faulting node.  To achieve this it
must have some degree of control over memory.
Management of physical memory by user-level code
is complicated by the need to ensure that it cannot
access physical memory allocated to other
managers.  In Grasshopper, this is achieved with an
abstraction of physical memory called a physical
page set.

Figure 5: Two Physical Page Sets

A physical page set models a number of equally
sized pages from a node’s physical memory.  Each
page in the set is given a unique index by which it
is identified.  Figure 5 shows two examples of
physical page sets on a node.  Indices of pages
within a page set do not, in general, map to the
same page number in the underlying physical
memory.  Also, as shown by PS2, the size of
pages in a page set may be different from the under-
lying page size. Note, however, that they must be a
multiple of the underlying page size and that the
physical memory for a single page must be con-
tiguous.

The operations on physical page sets are as fol-
lows:

• ps_create(cap mem_manager, cap node,
int npages, page_type type) returns
(cap page_set)

• ps_grow(cap page_set, int npages) returns
(int_list new_pages)

• ps_remove(cap page_set,
int_list old_pages)

• ps_copy(cap dest_page_set, int dest_page,
cap src_page_set, int src_page)

• ps_transfer(cap dest_page_set,
int dest_page, cap src_page_set,
int src_page)

• ps_get_stats(cap page_set, int page) re-
turns (page_stats stats)

• ps_set_stats(cap page_set, int page,
page_stats stats)

ps_create requests that a new page set be cre-
ated on the node referred to by node with npages
pages each of page_size bytes.  If the required
memory is not available, the operation fails.  When
a page set is created its type must be specified to
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tell the kernel what the memory will be used for so
that it can conform to any hardware constraints.
For example, memory used by device drivers for di-
rect memory access(DMA) is a special case.  The
only two types at the moment are ordinary, for
general use, and DMA, for direct memory access by
device drivers.  The operation returns a reference to
the newly created page set.

ps_grow increases the amount of physical
memory associated with a page set by npages
pages.  If the required memory is not available, the
operation fails.  The indices of the new pages are
specified by new_pages.

ps_remove removes the pages specified by
old_pages from the page set.  The memory backing
these pages is freed for use by other page sets.

ps_copy  copies the data from a page in one
page set to a page in another page set.

ps_transfer moves a page from one page set
to another.  dest_page must have already been allo-
cated before the transfer.  This avoids the possibil-
ity of trying to transfer a page to a remote node
where no physical pages are available.  After the
transfer, the contents of dest_page are the same as
src_page, and src_page is no longer valid in
src_page_set.

ps_get_stats  returns the access flags of the
specified page.  The flags indicate whether the page
has been accessed and whether it has been modified.

ps_set_stats  sets the access flags for the
specified page.  This will usually be used by a
manager to clear the flags after which it can use
ps_get_stats  to determine whether the page has
been accessed or modified.  This facility is essential
for implementing certain page discard policies such
as the popular clock algorithm and its variants.

Local Container Descriptors.  When data
in a container is accessed, a copy of it must be
moved to physical memory by the container’s man-
ager.  If many loci, each executing on a different
node, access the same page of data in a container, a
copy will have be made in the local memory of
each of those nodes.  This situation may arise when
a container on one node is mapped into container on
other nodes.  For example, in Figure 2, if C1, C2
and C3 were all on different nodes and address b
were accessed in C3 and address d were accessed in
C2 then two copies of the data from C3 would ex-
ist: one on C1 and one on C2.  When this situation
arises a consistency protocol [16, 18] . must be
implemented by the manager so that only one logi-
cal copy of the data exists

In general, the set of memory-resident pages for
a container on one node will differ from the set of
memory-resident pages for the same container on a
different node. To keep track of these sets, a data
structure called a local container descriptor(LCD) is
maintained on every node which has memory resi-
dent pages of a container in its local memory.  At
any point in time the LCD describes which pages
of a container exist in the local memory of a node
and at what physical address they exist by referring
to a page in a page set.

Figure 6: Two Local Container
Descriptors

Figure 6 shows two LCDs for container a(not
shown).  LCD(a, node1) shows which pages exist
in the local memory of node 1.  From the illustra-
tion it can be seen that pages 0 and 3 exist on node
1 in the physical memory represented by pages 0
and 2 of the page set PS1.  LCD(a, node2) shows
that pages 3 and 4 of container a exist on node 2 in
the physical memory represented by page 0 of PS2.
Note that the page sets on each node are of different
size.

In addition to memory resident pages, the LCD
maintains a reference to the container’s manager so
that the local kernel knows which container to in-
voke when it requires data management to be per-
formed on the container represented by that LCD.

Each LCD is an instance of an ADT that pre-
sents the following interface:

• lcd_bind(cap lcd, cont_offset addr,
cap page_set, int page, prot_flags prot)

• lcd_unbind(cap lcd, cont_offset addr)

• lcd_protect(cap lcd, cont_offset addr,
cont_offset len, prot_flags prot_flags)

• lcd_set_manager(cap lcd, cap manager)

lcd_bind informs the system that the data in
the region from addr to addr+len-1 in a container,
whose LCD is lcd, is memory resident.  The data is
in the physical memory described by page and page
page_set.  The page has its protection flags set to
prot_flags which are a combination of read and
write.  Any access that violates a page’s protection
will be delivered to the manager.

lcd_unbind undoes a previous lcd_bind at
addr in the LCD referred to by lcd.  This does not
free the memory however.  This is achieved by re-
moving the page from the physical page set to
which is belongs.

lcd_protect changes the protection flags of
the region addr to addr + len -1 in the LCD referred
to by lcd to prot_flags.  This region must be page
aligned.

lcd_set_manager changes the container that
is invoked for memory management services per-
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taining to the specified LCD.  Since it is possible
to set a container’s manager on a per node basis, it
is possible that many managers for the one con-
tainer exist at the same time.  If this is the case
then these managers must cooperate to perform the
responsibilities of a container manager.  Note that
changing the manager for an LCD does not change
the default manager of the container.

Disk drives.  Backing store in Grasshopper is
provided by ADTs called disks, which is an abstrac-
tion of actual secondary storage devices.  Usually, a
real disk will be partitioned into many smaller ab-
stract disks each used by a separate manager.  For
the purposes of this paper a disk is simply an ADT
with the following interface:

• disk_read(cap disk, disk_offset block,
cap page_set, int dest_page)

• disk_write(cap disk, disk_offset block,
cap page_set, int source_page)

disk_read copies data from secondary storage
to physical memory.  The caller specifies the disk
to read from, the block index to start reading from,
and a page within a page set to put the data.

disk_write copies data from physical to sec-
ondary storage.  The caller specifies a page in a
page set from which to get the data, the disk to
write to and the block on that disk from which the
write should begin.

Kernel Handling of TLB Misses

When a TLB miss occurs it is the kernel that
must initially handle the exception.  This section
describes the sequence of events that occurs.

Exception handling.  When a TLB miss occurs,
an exception is raised by the hardware.  The excep-
tion is handled by forcing the locus that caused the
miss to invoke the kernel’s exception handler.  See
Figure 4.

Address resolution.  The kernel’s exception han-
dler invokes the cont_translate of the mapping
graph, as explained in a previous section, to resolve

the base address and base container of the faulting
address.

LCD probe 1.  The kernel checks whether it has
an LCD for the base container found in the previous
stage.  If it does not, it creates one and sets the
manager to be the base container’s default manager.

LCD probe 2.  By this stage an LCD exists for
the base container found in the address resolution
stage.  The local kernel uses it to determine whether
the page containing the base address is memory-
resident.  If it is, it proceeds straight to TLB refill.

Page fault service.  The page is not resident in
the local memory so one must be obtained.  The
local kernel invokes the manager specified by the
LCD.  It specifies the base container, base address
and node on which the fault occurred.  It is up to
the manager to supply the data and update the LCD
appropriately.  An example of how this is achieved
is provided in the next section.

TLB refill.  By this stage a copy of the page
does exist and its physical page set identifier and
index within that page set are stored in the LCD.
The local kernel uses this information to derive a
real physical address and puts an entry in the TLB
accordingly.

Exception return.  The TLB miss has now been
serviced.  The faulting locus returns from the forced
invocation of the kernel and resumes execution by
retrying the access that caused the fault.

User-Level Servicing of Page Faults

In the previous section, a description of the
facilities provided to managers for data management
was given.  In addition, the manner in which TLB
misses are handled by the kernel was outlined.  The
aim of this section is to provide an example of how
Grasshopper’s data management facilities are used
by data managers; in particular, to service page
faults.

Figure 7 illustrates the initial situation:

• there are three nodes: a, b  and c.

Figure 7: a Locus Causes a Page Fault

Figure 8: a Container Manager
Servicing a Page Fault
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• there are three containers: C, a simple con-
tainer with no mappings; M, which is the
default manager of C and a disk D, which
M uses for backing store.

• there is a locus, L, executing in C on node
a.

• the local container descriptor for C, LCD1
on a has already been created, presumably
as a response to earlier page faults.

• there are two page sets PS1 and PS2. PS1
has been created by M to service page
faults on node a and is of type ordinary.
PS2 has been created by D as a local cache
for disk reads and is of type DMA.

When L tries to access address q in C, the fol-
lowing sequence of events, illustrated by figure 8,
occurs:

1. L attempts to access q in C and a TLB
miss occurs on a.

2. The local kernel on a follows the procedure
for TLB misses and finds that a copy of the
required page does not exist in its local
memory.  It invokes C’s manager, M, re-
questing it to service the page fault.

3. While in M, L determines that the required
data is on the secondary storage represented
by D so invokes it to read the data into
page 1 of PS1.

4. While in D, L reads the data from disk into
PS2 and calls ps_transfer to move the
data from PS2 to PS1. Since the two page
sets are not on the same node, a copy of
the transferred page is sent from c to a
transparently to the disk driver.

5. The disk driver has completed its task so L
returns to M.

6. Back in M, L calls lct_bind to map the
appropriate page of C to the data just
copied to PS1).

7. The manager has completed its task so L
returns to the local kernel of a.

8. The local kernel on a uses LCD1 to service
the TLB miss by translating the physical
page set and index into a real physical
address and updating the TLB.

9. The TLB miss has been serviced success-
fully so the locus resumes execution.

Two important points are illustrated by this ex-
ample.  The first is that the container in which the
fault occurred, the manager of the container and the
disk driver used for backing store may all be on dif-
ferent nodes.  Since Grasshopper provides location
transparency, the machine boundaries are invisible;
therefore, it makes no difference where individual
components exist. The second point is that data
copying is kept to a minimum. Only one copy,
that between the two nodes, was needed.

Further Work

The Grasshopper system as presented in this
paper is still under development.  It is initially be-
ing prototyped on a network of Sun 3/60 worksta-
tions and will soon be ported to the DEC Alphas

donated to the group by Digital Equipment
Corporation.

The implementation of the basic memory man-
agement facilities is nearing completion after which
a number of container managers will be imple-
mented.  Initially our goal is to implement three
managers. First, a manager that implements basic
demand paged virtual memory will be constructed.
This will be used to compare the performance of
Grasshopper with that of other systems providing
user-level memory management.  Second, a man-
ager employing shadowing techniques to provide
stability will be constructed and evaluated.
Following this, it is planned to implement a con-
tainer that provides stability in a distributed envi-
ronment.

Related Work

Grasshopper is not the first system to provide
user level programs with facilities to perform
memory management.  Other notable systems in-
clude Mach [29] , Chorus [1] , V++ [15]  and some
versions of UNIX.

Experience with a number of these systems [14]
has shown that they are inappropriate for con-
ducting research into persistence.  This is not sur-
prising considering they were not designed with
persistence in mind.  The major reasons these sys-
tems are inappropriate are that the level of control
they provide is insufficient and that they do not
support large enough address spaces.  Nevertheless,
they have shown that with suitable abstractions
user-level memory management is feasible.

 Conclusions

Based on previous experience in implementing
persistent systems, Grasshopper has been designed
to provide a flexible platform for conducting re-
search into persistence.

One of the major areas of research is the man-
agement of the persistent store in an efficient man-
ner.  To allow research in this area to be conducted,
Grasshopper allows user-level software to perform
most aspects of memory management, a task nor-
mally performed by the kernel.  Experimentation
and evaluation of new techniques can thus be per-
formed without having to complicate the kernel or
disrupt other parts of the system.

The way in which this is achieved is by provid-
ing a number of kernel-implemented abstract data
types that allow user-level software to manipulate
local and remote hardware in a constrained, secure
way.

We believe that the ideas presented in this paper
improve on work done in other systems that pro-
vide similar facilities.  These improvements are
based on first-hand experience and will allow future
research to be conducted in a very flexible and yet
secure manner.
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