
Published in: Proceedings, 1996 International Conference on Intelligent Information Systems, Washington DC, USA, ISMM/IASTED, 1996.

A Tailorable Conflict Manager For Flexible Concurrency Control

§ Michael Flanagan, § Fred Curtis, § Alan Fekete, ¶ Frans Henskens and § John Rosenberg

§ Basser Department of Computer Science, F09,
University of Sydney, NSW 2006, Australia.

¶ Information Systems Group, Department of Management
University of Newcastle, NSW 2308, Australia

Keywords: transaction management, concurrency control, advanced
transaction models

1. Introduction
For twenty years, the transaction has been acknowledged as the

central abstraction in preventing concurrent applications from
corrupting the contents of a database, through errors such as lost
update, dirty read or unrepeatable read [1]. The original concurrency
control algorithm, strict two-phase locking with shared and exclusive
locks, is still widely used in practice, since it is simple to implement
and guarantees serializability. Many alternative algorithms have been
proposed and, in commercial systems these include variants of key-
range locking to avoid phantoms, and escrow reads to improve
throughput on hotspot data, as discussed in [2]. New algorithms
continue to appear. These algorithms are usually evaluated by
simulation rather than being implemented. For example, a
constrained shared lock has been proposed in [3].

Besides algorithms which offer alternative implementations for
the traditional transaction semantics (ACID properties), there have
been many new models proposed, for use in advanced application
domains where cooperation is needed between concurrent activities.
A detailed survey of these new ideas is found in [4]. Each new model
needs one or more algorithms to provide concurrency control.

Traditionally, the choice of transaction model and even
concurrency control algorithm in a DBMS has been made when the
system is designed. The systems offers a fixed set of transaction
management primitives, such as begin-transaction, or commit; also
the lock manager has a fixed set of lock modes and unalterable rules
for dealing with conflicts. For example, the lock manager described
in [2] is hardwired so that a process blocks when another holds a
conflicting lock. This is unable to deal with nested transactions or
timestamp-based algorithms. This paper describes a system based on
a different view. We offer a system architecture where the choice of
transaction model and concurrency control algorithm can both be
made at run-time; indeed different algorithms can be used
simultaneously on different parts of the database.

The value of flexible concurrency control in a DBMS can be
seen in two different dimensions. First, within a single transaction
model, such as classical ACID transactions, it makes sense to
construct a database with a simple concurrency control algorithm and
later use data-type specific information to upgrade the algorithm for
those items that are hotspots in an attempt to increase throughput.
There is a substantial body of theory available to guide this process
[5]. Second , the different transaction models are each useful in their
own application domain; if a system supports only one model, then
either its use will be restricted to the domain where that model is
valid, or else the application programmers will need to waste time in
finding work-arounds. Our work was actually motivated by the
requirements of persistent stores, which support persistent
programming languages; here the store replaces a conventional file

system, so its need for broad support of many different application
domains is even more clear.

The key idea of our system is that there is a “conflict manager”
that fills the role of a traditional lock manager, but contains an
interpreter for a small stack-based language. When a particular
algorithm is chosen to provide concurrency control for some part of
the data, the user sends strings written in the language to the conflict
manager, and binds them to certain function names. Later when
access to the data is needed, the functions are executed in the conflict
manager. This results in a range of outcomes such as blocking the
requestor, allowing it to continue, or even sending a signal to a
waiting process. Since many traditional algorithms are based on
classes of conflicting locks, our system contains a “fast-path” so that a
table of conflict rules may be expressed in a particularly simple
fashion.

The system we describe here is part of a project in concurrency
control for persistent systems. The persistent store has been
implemented, as has the conflict manager. We have installed and
tested Two Phase Locking, Multi-granularity Locking and
Notification Locking algorithms. The first two provide a classical
transaction model, while the latter supports cooperative transactions.
Thus we have demonstrated our system’s flexibility.

The prior work most closely related to ours is the Kala system
[6], which also supports a range of concurrency control mechanisms.
However, Kala provides a fixed collection of powerful primitives to
allow and disallow sharing of versions, rather than a language
executed at run-time, and so Kala is less flexible than our proposal.
The ASSET system [7] which is based on the ACTA formalism, and a
similar system by Georgakoupolous [8] both allow for variation in the
transaction model. In these systems, a transaction model is defined by
presenting dependencies: for example, that T1 cannot commit until
after T2 has committed. A dependency of this sort will arise in
certain cases based on access to objects by the transactions. Both
systems [7] and [8] schedule operations to enforce whatever
constraints have been specified in the transaction model. These
systems operate at a higher, more declarative level than ours does.
These systems can describe various transaction models, but they do
not contain the stack based language which allows our system to also
execute different algorithms within a single transaction model (For
example neither [7] nor [8] suggests a way to model Multi-
Granularity Locking).

The rest of the paper is structured as follows. Section 2
describes the overall architecture of our system, and especially the
interaction patterns between the conflict manager and the rest of the
system. Section 3 outlines the calls that are supported, and take place
as an application is running. Section 4 briefly describes the stack-
based language, in which the algorithm is expressed. Section 5
discusses briefly how the conflict manager can be programmed to
follow the multi-granularity locking algorithm. A more detailed
description of the conflict manager interface and language, together
with an example, may be found in [9].

Published in: Proceedings, 1996 International Conference on Intelligent Information Systems, Washington DC, USA, ISMM/IASTED, 1996.

Client Process Client Process Client Process

Communications
Manager

Communication
Session

Communication
Session

Concurrency
Model B
Session

Concurrency
Model A
Manager

Concurrency
Model A
Session

Object
Manager

Object
Session

Object
Session

Conflict
Manager

Conflict
Session

Conflict
Session

Concurrency
Model B
Manager

Connection Message Thread Spawning

Operational Message

Fig. 1. System Layers and Messages

External Process
Layer

Communications
Layer

Concurrency
Control
Layer

Object
Services
Layer

2. System Overview
The system is designed to provide flexible concurrency control

over data residing in an object repository, or store (the term object is
used in a more generic manner than in object oriented paradigms).
The system provides run time selection of concurrency control
requirements by providing a layered structure in which different
tasks can be selected, within certain layers, to provide the run time
support for the chosen concurrency scheme. The system is divided
into layers as depicted in Figure 1. The major components which
make up the system are the Communications Manager, the
Concurrency Managers, the Object Manager and the Conflict
Manager.

The various components exist concurrently as multi-threaded
tasks which communicate with each other via a message passing
protocol. When an external process connects to the system to request
data services its causes new threads to be spawned within the various
layers of the system. These new threads combine to provide
dedicated service to the external process. Thus each external process
connects to what is effectively a vertical slice through the system.
The term “manager” is used to refer to the task responsible for
initialising and spawning new threads in each layer of the system.
The threads which are spawned to handle client process services are
referred to as “sessions”. Thus the “Conflict Manager” and “Conflict
Session” implement the Conflict Management Module. The
responsibilities and activities of each of the system components are
described below.

The Communication Manager is responsible for all
communication with client processes. The Communication Manager
is responsible for managing the connection process and selecting a
concurrency manager of the type appropriate for the client process.
All issues of communication such as pipe or socket management
reside within this part of the system. All internal communication

between the system components is handled via an internal message
passing protocol.

The various Concurrency Model Managers each implement a
different concurrency control scheme. Concurrency Model
Managers register themselves with the Communication Manager and
are activated when a client process requests a connection to the
service corresponding to their registered name. The concurrency
control manager and session are responsible for establishing a
connection to the Conflict Manager and the Object Manager and
providing any necessary initialisation, such as lock tables or
functions for the Conflict Manager. The Concurrency Model Session
then receives messages from the client process which are appropriate
to the scheme being implemented. The Concurrency Model Session
must translate the client requests into requests for data services or
conflict services. This involves such actions as translating simple
read and write requests into requests for locks and access to the
Object Manager.

The Object Manager provides an interface to a simple object
store similar to those which are commonly found in persistent
systems. The store implements a type of object which is simpler in
structure to objects found in object oriented systems. Objects consist
of a number of bytes of uninterpreted data and a collection of
references to other objects. Concurrency Model Managers make
requests of the Object Manager to perform tasks such as reading,
writing, creating, deleting objects and version management.

The objects within the store are given object identifiers (OIDs)
which are unique throughout the lifetime of the store. The Object
Manager provides caching and garbage collection services
transparent to the other modules.

The Conflict Manager, which is the focus of this paper, provides
a configurable conflict management service to the various
Concurrency Model Managers. The Conflict Manager is initialised,

Published in: Proceedings, 1996 International Conference on Intelligent Information Systems, Washington DC, USA, ISMM/IASTED, 1996.

by a Concurrency Model Manager, with the necessary tables and
functions for a given concurrency scheme. The conflict manager
then receives requests from a Concurrency Model Session and
interprets the requests using the installed conflict resolution
procedures. The initialisation of the Conflict Manager, the
processing of requests and the language used to code the required
functions and tables are described in detail in this paper.

3. The Conflict Manager Interface
The role of the Conflict Manager is to provide services to the

Concurrency Model Manager to handle tasks involving the
determination of resource conflicts within the concurrency scheme.
While the Concurrency Model Manager handles issues such as
transactional structure, what should be locked, tagged or read and
when such actions are performed, the Conflict Manager determines
which associations cause conflicts or which requests cause the
notification or blocking of other processes.

The Conflict Manager interface is divided into two sections.
One section of the interface provides the facility for specifying a
conflict scheme, i.e. initialising the Conflict Manager for a specific
scheme. The other section of the interface accepts request messages
which are interpreted using the tables and functions of the registered
schemes.

The specification section of the Conflict Manager interface
consists of functions for:

• gaining a connection to the Conflict Manager,
• installing code for the functions of a concurrency scheme
• querying the conflict manager for the value of scalars and

identifiers for registered functions.

A description of the process of gaining a connection to the
Conflict Manager involves a description of the task management
policy and message passing protocols of the system. This falls
outside the scope of this paper. Part of this initialisation process
involves the specification of a file name which identifies a file
containing code for the Concurrency Model Manager. This code
specifies the functions and tables necessary to implement the conflict
resolution of the desired scheme.

The functions used to query the values of scalars and function
identifiers are:

ModeID CMGetModeID(SysTask cm, char *mode);
and

FunctionID CMGetFunctionID(SysTask cm, char
*f_name);

These two functions allow the Concurrency Model Manager to
get numerical identifiers which are associated with the named
functions or modes. This allows the Concurrency Model Manager to
specify these modes or functions without the Conflict Manager
needing to do time consuming string comparisons.

The messages described above are used by a Concurrency
Model Manager during the initialisation phase. When these
initialisation procedures are completed, individual Concurrency
Model sessions (child tasks of the Concurrency Model Manager) can
acquire a Conflict Manager connection and begin to perform
association requests, free association etc. The messages which are
used to perform the tasks are discussed below.

Messages may be sent from a concurrency model session to
perform the following tasks:

• request an association on a resource
• free an association on a resource

• invoke a registered function to perform some action (e.g.
commit and abort).

To request an association a concurrency session sends the
message:

Bool request_assoc(Resource res, AssocMode
mode)

This message requests that the resource name res be associated
with the requesting task in the supplied mode. This causes the
Conflict Manager to invoke the function specified with the name
requestAssoc. Note that this action does not necessarily result in
the creation of a lock in the conventional sense. It can result in some
alternative type of association being created between the session and
the resource, which could for example result in the notification of
some other sessions. Also note that the “resource” is just a string; it
need not be directly linked to any object in the store (although it
often is so linked).

Similarly to the request_assoc message a concurrency session
may send the message,

Bool release_assoc(Resource res, AssocMode
mode)

which will cause the invocation of the function registered as
releaseAssoc. This message requests the Conflict Manager to remove
the requesting task from the list of tasks which hold associations with
the resource. Concurrency models may allow multiple tasks to hold
compatible associations with a single resource so a release_assoc
message will not necessarily leave a resource free of all associations.

To cause a transaction to commit or to perform some other
action appropriate to the current concurrency control model, a task
may send the message,

Bool invoke_function(FunctionID action,
 char *format, ...).

This message will cause the conflict manager to invoke the
function with the given id. The ‘C’ function which acts as a stub for
this message takes a variable argument list and a format string similar
to the ‘C’ I/O functions. This allows a variable collection of
arguments to be passed to the Conflict Manager function. The
invoke_function message allows a scheme to implement such actions
as:

• freeing all locks in the case of commit or abort in conventional
transactions

• passing all locks onto the parent transactions on completion of a
nested transaction

• etc.

The above mentioned messages allow concurrency models to
register functions with the Conflict Manager and invoke functions.
These functions are written in a small stack based language which
will be described in the next section.

4. The Conflict Manager Language
The Conflict Manager language is a small stack based language

similar to Forth or Postscript. The language is designed to be
applicable to the development of small functions which determine
simple conflict states and keep track of associations between tasks
and resources.

The language includes facilities for

• function definition,
• table definition,
• scalar definition,

Published in: Proceedings, 1996 International Conference on Intelligent Information Systems, Washington DC, USA, ISMM/IASTED, 1996.

• process control,
• function invocation,
• flow control,
• list manipulation,
• association structure access
• table access,
• arithmetic operations and
• stack manipulation.

In addition to this the language has a collection of built in
functions.

Function definition is achieved through the use of the def
operator, which has the form:

 <name><codeBlock> def

This associates the code in the codeblock with the supplied
name. The name, which is preceded by a ‘/’ character as in
PostScript, is associated with a numerical identifier which may be
used to uniquely and efficiently identify the function from outside
the Conflict Manager. Within the Conflict Manager code the
function is referred to by its ASCII name.

Scalar definition is similar. The scalardef, with the syntax:

 <name><scalarList> scalardef

 operator is used, as in the following example, to define an
enumerated type. E.g.

 /mode [/NONE /READ /WRITE /LASTMODE]
scalardef

Tables are defined with the tabdef operator which has the form:

 <name> <entry00> ... <entryNM> <width> <height> tabdef

This operator takes a collection of table entries and a width and
a height and creates a two dimensional array with the supplied name.
This array may then be accessed using the language’s table
manipulation operators.

Process Control in the language involves the concept of a task
which is a connection to a Conflict Manager session from a
Concurrency Model session. Task management is performed using
the operators block and wake. The block operator allows a Conflict
Session to suspend the invoking task (the Concurrency Model
Session to which it is connected) and label its suspension with a
resource and an associated mode, so that it can later be awoken
conditionally. The wake operator allows a Conflict Session to wake
up another task. The structure of these operators is a follows:

 <resource> <mode> block
 <task> wake

Function invocation is performed by the call and execTable
operators. The call operator takes a function id from the top of the
stack and invokes the code associated with this function. As the
language is stack based, parameters are passed and results returned
by placing values on the stack before, and at the end of, invocation.
The format of the call operator is simply:

 <functionId> call

The execTable operator provides function invocation from a two
dimensional lookup table. Its form is:

 <index1> <index2> <tableID> execTable.

Another form of call is provided by the callback operator. When
executed, the callback operator will invoke the callback function

specified during registration of the scheme. The callback operator
has the form:
 <list> callback.

Flow control in the language is supported by the following
operators:

 <start> <inc> <stop> { code_block } for
 { code_block } while
 { code_block } until
 <cond> { code_block } if
 <cond> { btrue } { bfalse } ifelse.

The for operator steps through the integers from start to stop,
using the incremental value inc, and executes the code block once for
each integer after placing the integer on the top of the stack. The
while and until provide loops by testing the top of stack and only
executing the block of code if the value is true. While tests the stack
before each invocation and until tests after, thus until must execute
the block at least once. The if and ifelse operators execute the code
segment conditionally depending on the value of the top of stack.
Ifelse provides an alternative code segment to execute if the top of
stack holds false.

List manipulation is performed by the use of the makelist,
addhead, addtail, head, tail and joinlist operators. In addition to
these operators the language provides operators for iterating over a
list. The simple operators have the following syntax:

 <i1>... <in> n makelist ⇒ [i1...in]
 [i1...in] [j1...jm] joinlist ⇒ [i1...in, j1...jm]
 [i1...in] <j> addhead⇒ [j, i1...in]
 [i1...in] <j> addtail ⇒ [i1...in, j]
 [i1, i2...in] head ⇒ [i2...in] I1

 [i1,...in-1, in] tail ⇒ [i1...in-1] in

Makelist converts the top n items on the stack into a single list
item. Addhead, addtail and joinlist allow incremental list
construction by adding elements to the beginnings and ends of lists or
concatenating two lists.

To facilitate iteration over a list of elements the language
provides the operator lfor, land and lor. The syntax for these
operators is:

 [i1..in] { code_block } lfor
 [i1..in] { code_block } land
 [i1..in] { code_block } lor.

The lfor operator iterates over a whole list by placing
subsequent elements from the list onto the stack then executing the
code block. The land and lor operators provide short cut evaluation
of a predicate over the contents of a list. The land operator executes
the code block once for each element of the list (after placing the
element on the top of stack as in lfor) until the code block returns a
false value on the top of stack or the list is consumed. If the block of
code returns true for all list elements the final value true is left on the
top of stack otherwise a value of false is returned. The lor operator
performs similarly with disjunction instead of conjunction.

The language supports a built in type called an association. This
type represents a binding between a task (Concurrency Model
session) and a resource which is tagged with a mode. Thus it
contains the three fields: owner, resource, mode. The language has
the following operators for manipulating this structure

 <o:owner><r:resource><m:mode> makeassoc ⇒ <(o,r,m):
lock>
 <(o,r,m):assoc> assocowner ⇒ <o:owner>

Published in: Proceedings, 1996 International Conference on Intelligent Information Systems, Washington DC, USA, ISMM/IASTED, 1996.

 <(o,r,m):assoc> assocres ⇒ <r:resource>
 <(o,r,m):assoc> assocmode ⇒ <m:mode>.

These operators allow the construction and separation of
associations.

The table access functions provided by the language allow the
implementation of two dimensional arrays. The operators used for
this are:

 <tableid> <row> <col> tget ⇒ <table element>
 <tableid> <row> <col> <element> tput

Operators also exist for the manipulation of lists as single
element arrays. These are lget and lput which behave similarly to
their two dimensional counterparts.

The language also contains operators which are similar to and in
many cases the same as those provided by Postscript. They include:
dup, add, sub, neg, exch, rol, ndup, pop, <, > etc.

To facilitate the specification of a conflict management scheme
in the language, the Conflict Manager has several reserved names.
These names are

• mode - the name of the scalar definition used to identify valid
association modes

• releaseAssoc - the name of the function called in response to the
release_assoc message.

• requestAssoc - the name of the function called in response to the
request_assoc message.

• maxTable - the name of a table of association modes used by the
predefined function MaxMode.

The language includes a number of predefined functions which
have predefined function identifiers. These functions perform
common tasks which are expected to be needed in most systems.
These functions are called through the use of the call operator in the
same way as registered functions but all their function identifiers fall
within a reserved range which will never be returned as the
identifiers of registered functions. Some of these functions
manipulate a built-in table shared among all Conflict Sessions, which
stores all of the registered associations between resources and tasks.

The two functions for storing and removing associations from
the built-in table are:

 <lock> storeAssoc call
 <lock> deleteAssoc call

The deleteAList function is called as follows:

 [lock1...lockn] deleteAList call

It examines each association record in the supplied list and removes
the referenced association from all internal tables, thus freeing the
resource from this association.

The holds_list and blocked_list functions:

 <res><mode> holds_list call ⇒ [lock1...lockn]
 <res><mode> blocked_list call ⇒ [lock1...lockn]

return a list of all locks held on, or blocked during request of,
resource ‘res’ in mode ‘mode’. The mode may be replaced by the
reserved mode any_mode to get a list of all locks held on ‘res’.

The max_mode function

 <res> max_mode call ⇒ <max_mode>

uses the lock maximization table registered with the name maxTable
to determine the upper bound of the modes of all locks on resource
‘res’. This function is used in schemes such as Multi Granularity

Locking to determine if a requested lock is compatible with the locks
already granted.

The language includes predefined functions which make use of
parent/child relationships between tasks using the conflict manager.
These functions include:

 <t1><t2> is_ancestor call ⇒ <boolean>
 True if t1 is ancestor of t2
 <transaction> parent call ⇒ <task_id> Parent of
transaction

These functions are applicable to schemes such as nested
transactions where there is a family tree structure which relates all
tasks which use the lock manager.

The function task_locks

 <task> <mode> task_locks call ⇒[lock1...lockn]

returns a list of all locks held by the task with identifier ‘task’ which
hold a resource in the given mode. Again the reserved mode
any_mode may be used in place of a specific mode and will result in
the return of a list of all the locks help by ‘task’ in any mode.

The next section discusses how the language features and
functions described above, may be used to implement a Multi-
granularity locking scheme.

5. An Example: Multi-granularity Locking
The multi-granularity locking example discussed here is a very

simple one. It assumes a system consisting of two levels of objects.
When a client locks more than a given threshold number of
subobjects then the parent object is locked. More details (including
substantial code fragments) can be found in [10].

5.1. Conflict Manager Functions

To implement Multi-granularity locking we must register a
group of functions with the conflict manager.

The function Gproc is called from a jump table to grant a lock.
It makes use of the built in function store_lock which adds a lock to
the granted queue for a given resource. It assumes that a lock
structure exists on the argument stack which contains the necessary
lock details. The text of the Gproc function is:

Gproc {
 STORE_LOCK call
 false
}

It leaves false on the stack which will be used in other code as an
indication that the lock request did not block.

The Bproc function, as with Gproc, is called from a jump table
when the requested mode conflicts with the currently granted mode
of a resource. It uses the predefined function BLOCK to cause the
current thread to suspend execution until it is awoken using the
WAKE function. The BLOCK function takes a resource and a lock
mode so that threads may be selectively reactivated depending on the
resource and mode provided when they executed a BLOCK call.
Bproc extracts the resource and mode from the lock structure which
it assumes is on the stack. Bproc and Gproc must assume the same
stack contents when invoked as they are both called from the same
jump table. The text of Bproc is:

Published in: Proceedings, 1996 International Conference on Intelligent Information Systems, Washington DC, USA, ISMM/IASTED, 1996.

 Bproc {
 dup // copy the lock
structure on the TOS
 lockres exch // get resource and
swap with
 // lock structure on
TOS
 lockmode // TOS now holds res,
mode
 BLOCK call
 true
 }

The Gproc function returns the value true to indicate that
blocking took place.

The GetLock function is used to process a lock request. It first
determines the maximum lock mode under which the requested
resource (r_res) is currently locked by calling the predefined function
MAX_MODE. It then uses this value and the value of the requested
mode as indices to the LockRequestTable (shown figuratively below)
to select either Gproc or Bproc depending on the lock compatibility.
If a block occurs the function called from the LockRequestTable will
leave the value true on the stack which will cause the while loop to
repeat when the thread is awoken. In this manner the process will
continue until the lock is successfully acquired. As GetLock will be
called from outside the interpreter (i.e. in direct response to a
Concurrency Model Manager request) it makes use of the external
argument symbols r_owner, r_res and r_mode. The text of the
GetLock function is:

 GetLock {
 {
 // create lock structure as arg
for Gproc or Bproc
 r_owner r_res r_mode makelock
 // find maximum current mode
 r_res MAX_MODE call
 r_mode
 // index jumptable using
requested and maximum modes
 LockRequestTable exectable
 } while
 };

In the above code the symbol LockRequestTable would be
replaced by the identifier returned when the table was registered.
The registering of this table is discussed below.

The FreeLock function is used to wake any processes which are
blocked waiting for the given lock. The processes will then compete
to acquire the lock. The text of the FreeLock function is:

 FreeLock {
 dup DELETE_LOCK call
 lockres ANY_MODE BLOCKED_LIST call
 { lockMode wake }
 lfor
 }

The function assumes a lock structure is on the stack indicating
which lock is to be freed. It duplicates this lock structure (dup) then
frees it using the built in operator delete_lock. The function then
uses the built in operator lockRes to extract the resource name from
the lock structure and wakes any tasks which are in the list of tasks
blocked on this resource. Note this implementation is inefficient in
that many processes may be wakened while only one may
successfully get the lock. Note also that this method does not
support fifo granting of lock requests. If fifo granting is desired, or if
efficiency is required, the wake operator could be applied only to the
head of the list returned by BLOCKED_LIST.

The EndProc function is used to clean up after a transaction has
committed or aborted. It simply gets the list of locks held by the
current transaction using the predefined function TASK_LOCKS and
then frees all locks in the list using the FreeLock function.

 EndProc {
 r_trans ANY_MODE TASK_LOCKS call
 { FreeLock call } lfor
 }

5.2. Concurrency Model Manager overview

Rather than present the Multi-granularity Model Manager code,
we merely outline how the code works.

Firstly the abovementioned Conflict Manager functions must be
registered. This is done by passing a character string to the function
register_function and storing the result in a variable of type
FunctionID. Next the tables for lock maximization and the jump table
called LockRequestTable are registered using the register_table
function. The two tables are passed textually, with entries so that in
the lock maximization table, the entry corresponding to the row for
mode S and the column corresponding to IX has value SIX, to
indicate that when a transaction has both an S and an IX lock on an
item, the effect is the same an SIX lock. Similarly, in the lock request
table, the row corresponding to S and the column corresponding to
IX has entry Bproc, to indicate that when a transaction requests an S
lock on an item already locked (by another transaction) in IX mode,
the requestor must be blocked.

Having registered all required functions and tables the
Concurrency Model Manager can register the scheme with the
conflict manager by a call to the new_control function.

In addition to registering the functions and tables needed for
conflict management the code for the Concurrency Model Manager
must include functions to handle connections, disconnections and
requests for reads and writes to objects. The main message loop of
the Concurrency Model Manager uses a two level object hierarchy
with simple reads and writes of second level objects. If more than a
certain number (threshold) of locks are requested for a group of
siblings then a lock is taken out on their common parent..

Acknowledgements
We are grateful for financial support from the Australian

Research Council under grant A49232246.

Conclusions
We have presented a system design that can support flexible,

and even dynamic, choice of concurrency control algorithm and
transaction model. The key idea is to have a programmable conflict
manager that maintains “locks” that are associations between a
transaction and a resource name. The conflict manager can interpret
a small stack-based language whose details are in this paper. When a
concurrency control scheme is chosen, one can register appropriate
functions to obtain and release locks. Later, when an application is
running, these functions are executed, which results in transactions
being blocked, allowed to proceeed, or woken up, as specified by the
concurrency control algorithm. The system has been implemented;
in [10] its flexibility is demonstrated by showing how several
different algorithms are expressed.

References
[3] D. Agrawal and A. El Abbadi, “Locks

with Constrained Sharing” in

Published in: Proceedings, 1996 International Conference on Intelligent Information Systems, Washington DC, USA, ISMM/IASTED, 1996.

Proceeedings ACM PODS: 85-93,
April 1991

[7] A. Biliris, S. Dar, N.Gehani, H.
Jagadish, K. Ramamritham, “ASSET:
A system for supporting extended
transactions” in Processdings ACM
Sigmod: 44-54, May 1994.

[4] A. Elmagarmid (ed), Database
Transaction Models for Advanced
Applications, Morgan Kauffman 1992.

[10] M. Flanagan, Concurrency Control for
a Persistent Object Store, Ph.D. thesis,
Department of Computer Science,
University of Sydney, January 1996.

[9] M. Flanagan, F. Curtis, A. Fekete, F.
Henskens and J. Rosenberg, “A
Tailorable Conflict Manager for
Fl;exible Concurrency Control”, Basser
Department of Computer Science
Technical Report, University of
Sydney, Australia, 1996.

[1] K.Eswaran, J. Gray, R. Lorie, I.
Traiger, “The Notion of Consistency
and Predicate Locks in Database
Systems” in Comm. ACM 19(11): 624-
633, November 1976.

[8] D. Georgakopoulos, M. Hornick, P.
Krychniak, F. Manola, “Specification
of Extended Transactions in a
Programmable Transaction
Environment” in Proceedings
International Conference on Data
Engineering, 1994.

[2] J. Gray and A. Reuter, Transaction
Processing, Morgan Kaufmann 1993.

[6] S. Simmel and J. Godard “The Kala
Basket” in Proceedings OOPSLA 1991.

[5] W. Weihl, “Local Atomicity
Properties: Modular Concurrency
Control for AbstractData Types” in
ACM TOPLAS 11(2): 249-282, April
1989.

