
Published in: Proceedings, IASTED International Conference on Software Engineering SE ‘97, IASTED/ACTA Press, ISBN 0-88986-
244-3, San Francisco, U.S.A., pp. 168-172, November 1997.

PERSISTENT DATABASES THAT PERFORM?
F. A. HENSKENS & M. G. ASHTON

Information Systems Group
Department of Management

University of Newcastle
N.S.W. 2308

email: mgfah@alinga.newcastle.edu.au, mashton@ozemail.com.au

KEYWORDS:

Persistence, database, object stores, Grasshopper, Congeries

1. INTRODUCTION

Conventional computer systems implement a dichotomy of
storage mechanisms: a file store which provides a durable
repository allowing data to exist after the creating program has
ceased execution (such data is termed long-term data), and
virtual memory which provides a repository for data during
program execution (such data is termed short-term data). In
typical conventional systems it is the responsibility of the
programmer to manage the conversion of data between the
transient form suitable for virtual memory and the permanent
form suitable for the file store. This conversion uses up CPU
cycles, and can result in data misinterpretation leading to
reduced data protection.

Persistent systems, on the other hand, remove the distinction
between long and short-term data by providing a single set of
mechanisms for the management of data regardless of its
lifetime. Work on persistence to date has largely concentrated
on implementation of stores which adhere to the properties of
orthogonal persistence defined in [1]. A much smaller body of
work has investigated applications which exploit the benefits of
persistence. Persistent stores have long been touted as
alternatives to conventional database systems, but to our
knowledge no-one, with the possible exception of IBM with the
AS/400 [2], has actually implemented a database-style
application interface to a persistent store. Such an interface
would rely on the underlying persistent store providing a
durable repository for data rather than having to provide this
durability itself, as occurs with conventional database systems.

On the surface it would seem that a persistent database
system could be implemented by provision of appropriate
software which provides the required interface to the persistent
store. This approach ignores the performance issues which have
long been recognised by the database community [3]. In the
quest for performance, conventional database systems provide a
durable store by building on or duplicating some of the features
of the underlying operating system. For example conventional
database systems typically implement their own buffer
management.

In this paper we present the results of research which
verifies the performance of the Grasshopper persistent operating
system compared to Unix executing on the same hardware, and
then presents techniques which draw on the large body of
database experience to improve the efficiency of database
operations when utilising features of an underlying persistent
store.

2. PERSISTENCE

Approaches to implementation of persistent stores have been
varied, ranging from purpose-built hardware and operating
systems (for example Monads [4]), through persistent operating
systems executing above conventional hardware (for example
Choices [5], Clouds [6] and Grasshopper [7]) to layered
architectures above conventional hardware and operating
systems (for example Napier [8] and Casper [9]). Others have
built persistent classes into programming languages (for
example E [10] and Texas [11]), but such implementations do
not fully satisfy the requirements of orthogonal persistence.

The Grasshopper persistent operating system [7] provides
explicit support for orthogonal persistence utilising conventional
hardware. It provides three important abstractions:

• Containers: Containers provide an abstraction for both
storage and access to data objects.

• Loci: The locus provides an abstraction for execution.

• Capabilities: Capabilities provide an abstraction for
naming and protection.

These abstractions have been described elsewhere [7] and
provide useful support for database management. In particular:

• Container - a single abstraction for both storage of and
access to data. Containers may be larger than the virtual
address space supported by the underlying hardware.
The current implementation supports containers up to
264 bytes in size. Mechanisms, such as container
mapping, provide the ability to access even larger data
sets.

• Associated with each container is a manager which is
responsible for rendering the container’s data available
to application programs. These managers are situated at
user level, allowing container management to be
tailored to the kind of data stored in the container and
the patterns of access to this data.

• Data is durable and may outlive the program which
created it. Persistence is a property of the operating
system and is entirely transparent to the user.
Consequently programmers do not have to think in
terms of both storage and access models.

• Support for the notion of stability. Grasshopper
supports the recovery of the system to a consistent state
in the event of a crash. This is potentially useful in the
development of support for database transactions.

Published in: Proceedings, IASTED International Conference on Software Engineering SE ‘97, IASTED/ACTA Press, ISBN 0-88986-
244-3, San Francisco, U.S.A., pp. 168-172, November 1997.

• Capabilities - capabilities control access to and
manipulation of objects. Database data is typically
shared between multiple applications acting on behalf of
multiple concurrent users. Such access must be strictly
controlled from both the security and concurrency view-
points. Capabilities achieve this using a single
mechanism which provides security and access control
in contrast with two mechanisms used by conventional
systems.

Persistent systems have long been criticised for poor
performance, and since our research is aimed at providing
database systems which exhibit similar performance to
conventional database systems, we thought it important to
perform comparative benchmark testing of the underlying
operating system. We used a simple relational database
implementation [12] as the basis for a close approximation of
the OO1 [13] database benchmark. Using this we compared the
performance of the benchmark operations using an underlying
Unix file store with its performance using the store provided by
the Grasshopper persistent operating system.

3. PERFORMANCE EVALUATION OF GRASSHOPPER

The OO1 database benchmark exercises a database over a
number of operations such as random lookup, directed search
and insertion of new records. It was chosen for this experiment
because it was relatively straightforward to implement in a wide
range of systems, yet provided a useful set of operations on the
database.

The OO1 database is defined as two logical records:

Part: RECORD[id: INT, type: STRING[10], x, y: INT,
build: DATE]
Connection: RECORD[from: Part-id, to: Part-id, type:
STRING[10], length: INT]

The small database has 20,000 parts with unique IDs 1
through 20,000. There are 60,000 connections with exactly
three connections from each part to other randomly selected
parts. The x, y and length fields each contain values randomly
distributed in the range [0..99999], the type fields have values
randomly selected from the strings {“part-type0” . . . “part-
type9”}, and the build date is randomly distributed over a 10-
year range. The random connections are generated so that 90%
of the connections are randomly selected from the 1% of parts
that are closest to the original part, with the remainder selected
from any random part.

The following operations are carried out on the database:

Lookup Generate 1,000 random part IDs and fetch
the corresponding part from the database.
For each part, call a null procedure written
in a host programming language, passing the
x, y position and type of the part.

Traversal Find all the parts connected to a randomly
selected part, or to a part connected to it, and
so on, up to seven hops (total of 3280 parts,
with possible duplicates). For each part, call
a null programming language procedure with
the value of the a and y fields and the part
type. Also measure time for reverse

traversal, swapping “from” and “to”
directions to compare the results obtained.

Insert Enter 100 parts and three connections from
each to other randomly selected parts. Time
must be included to update indices, or other
access structures used in the execution of
lookup and traversal. Call a null
programming language procedure to obtain
the x, y position for each insert. Commit the
changes to disk.

The OO1 benchmark specifies two sizes of database; small
as described above with 20,000 parts and 60,000 connections,
and large, scaled by a factor of 10 with 200,000 parts and
600,000 records. A third size, huge, with 2,000,000 parts and
6,000,000 connections is specified, but not used for this
experiment.

The database was set up as a simple physical storage model
based on B+-tree indexes and implemented at the application
level using the C language. It consisted of four levels:

• The physical storage level. The tables and their indexes
were each implemented as separate files.

• The file and index management level. Access and
management of the files were supported through a data
file management module and a B-tree management
module.

• The database management level. The database
management module abstracts over details of file and
index management.

• The application level. Operations on the database such
as database creation, lookup, traversal, and insertion
were implemented at the application level.

The datafile, B-tree and database management software was
based on a database management project written by Stephens
[12] for a MS-DOS system, and adapted by us for the Unix and
Grasshopper environments.

Three implementations were developed making only those
changes which were absolutely necessary for the
implementation to run in its particular environment, thus
reducing the effect of coding differences on the comparative
results. Changes were required to the open, close, read, write,
and seek operations, but algorithms were not changed and no
effort was made to take advantage of features of any
environment. All testing was performed on a 133 MHz DEC
Alpha with 64 Megabytes of memory using OSF Unix or
Grasshopper as appropriate. Tests performed were:

• A file-based model where each table and index was
implemented as a separate file. This was run using OSF
Unix.

• A memory-based model where a file was modelled in
persistent memory. All the operations on the database
remained identical to those used in other tests. This was
run using the Grasshopper system.

• A memory-based model mapped onto memory-mapped
files. This was run using OSF Unix.

Published in: Proceedings, IASTED International Conference on Software Engineering SE ‘97, IASTED/ACTA Press, ISBN 0-88986-
244-3, San Francisco, U.S.A., pp. 168-172, November 1997.

The application layer, implementing the OO1 database was
developed in C. The specification of the database was written in
the schema language provided with Cdata project and then
converted to a C program and header files.

The OO1 database for this experiment consisted of the
following:

PART The file of parts as specified in the original
specification, together with a B-tree index
on the primary key id.

CONNECT The file of connections as specified in the
original specification together with three
indexes. A B-tree index on the primary key
(the concatenation of the from and to fields),
together with separate indexes on the from
and to fields.

The results of these experiments are summarised in Table 1.

The results for the 20,000 part database presented in Table 1
indicate that the Grasshopper and memory-mapped OSF
implementations perform the test an order of magnitude faster
than the file-based OSF version. This is understandable because
the Grasshopper and memory-mapped systems do not depend on
the file system calls with their associated overheads. Results for
the 200,000 part database were 33% higher for OSF files, and
18% higher for the memory mapped and Grasshopper systems.
Grasshopper could not be tested for the 2,000,000 part database
because the state of system development did not allow such
large data sets. While the results for Grasshopper and the
memory-mapped file systems were consistently similar, it
should be noted that memory mapped files do not provide any
resilience and would be unsuitable for implementing real-world
database systems.

These performance figures were achieved using the
persistent store as a replacement for a file system with no
attempt to exploit features uniquely provided by the store. In
particular no attempt was made to optimise the positioning of
data to suit the access patterns used in the benchmark tests.

4. OBJECT PLACEMENT AND PERFORMANCE

Contemporary computers, when used for data intensive
applications, provide insufficient primary (virtual or
computational) memory to contain the entire data set. This
limitation, together with the requirement for durable storage,
results in the need for constant movement of data between
primary and secondary memory. Secondary memory is
generally four orders of magnitude slower than primary
memory. Thus program performance is adversely affected by
operations which require movement of data between memory
levels. Clearly it is desirable to maximise the presence of soon-
to-be-accessed data in primary memory, while simultaneously
minimising data transfer operations. This is achieved at the file-
system level in conventional database systems by a combination
of judicious data placement and appropriate buffer management
[3], and at the virtual memory level by advanced memory
management protocols [14, 15]. Such placement clusters data
according to, for instance, its existence within relational tables
or expected access patterns defined by the database
administrator.

In conventional database systems, placement of newly
created data is achieved when the data is moved from
(temporary) computational memory to (durable) database
memory. Until now such user control over placement has not
been available for orthogonally persistent stores - in these
systems data is created, its placement is transparent to
application programs, and its durability is achieved through its
being referenced by other persistent data.

Observation of the data objects created in our earlier
experiments revealed that:

• Object placement was according to order of creation.

• Multiple objects typically exist within the disk I/O
transfer block.

• Subsequent object accesses were often not related to
order of object creation. The neighbourhood established
during object creation was thus not necessarily the
neighbourhood required for minimisation of disk I/O
during subsequent access to the objects.

Clearly control over the physical location of data objects is
necessary to achieve the performance benefits derived from data
clustering. In the persistence context such control requires the
ability to specify placement at the time of object creation.

Commonly used programming languages provide
instructions (eg malloc() in C and new in C++) for object
creation. These allocate object storage sequentially from a
single heap, and thus do not provide the level of support
required for optimal placement. (Multiple heaps are supported
by some commercial libraries [16].)

5. OBJECT PLACEMENT AND CONGERIES

In a typical database environment, the database designer
must set parameters which affect the performance of the system.
These include buffer properties, file locations (possibly over
different physical disks), clustering of data into and within files,
use of indexes, and so on. In performing this task the designer
must take into account issues such as expected data access
patterns, size of data, frequency of use, size of memory, number
of disk drives available and so on. Many of these are equally
relevant to databases implemented in persistent systems though,
of course, persistent systems do not have a direct equivalent to
files.

To achieve optimal placement of objects within the
persistent store we need the ability to:

• Allocate new blocks of storage with the same size
and alignment as those used for disk I/O.

• Organise these blocks to form storage regions
which we call congeries (a congeries is a gathered
mass).

• Nominate the congeries in which a new object is
created.

Published in: Proceedings, IASTED International Conference on Software Engineering SE ‘97, IASTED/ACTA Press, ISBN 0-88986-
244-3, San Francisco, U.S.A., pp. 168-172, November 1997.

Operation OSF: Files OSF: Memory Mapped Grasshopper

Lookup 1.45 0.11 0.11

Traversal 7.68 0.47 0.47

Insert 1.70 0.17 0.18

Total 10.01 0.75 0.76

TABLE 1: RESULTS OF THE OO1 BENCHMARK - 20,000 PART DATABASE (TIME IN SECONDS)

Congeries perform a management function for persistent
databases similar to that of the file in conventional databases.
At the time of persistent database design, elements of the
schema are allocated to congeries. This is analogous to the
mapping of, for example, tables onto files in conventional
databases.

We note that there is no requirement that congeries comprise
contiguous disk or virtual memory blocks. Contiguity of the
storage provided by congeries is achieved by appropriate
management rather than by the physical location of its
component blocks (in the same way as non-contiguous physical
memory pages may be used to implement contiguous virtual
memory).

The addition of an extra parameter to the call used to create
objects allows identification of the congeries to which the object
belongs. Congeries management requires facilities to:

• Expand the congeries size by adding new blocks.
• Add a new object to the congeries.
• Delete an object from the congeries.
• Garbage collect the congeries.
• Release blocks from the congeries.

In practice congeries may be implemented using library
functions, even where there is no support for multiple heaps.
The allocation of a newly created object to a congeries may
either be automatic (based, for instance, on database designer
specification combined with the relational table to which the
object belongs), or through the provision of dedicated
programming language instructions.

6. CONGERIES AND GRASSHOPPER

The above abstractions provide the fundamentals on which
to build more fine-grained control over object management, in
particular in the context of this paper, object placement.

Currently, because of the state of development of the
Grasshopper Operating System, we are forced to implement
database systems within a single container. Of necessity, then,
congeries form subsets of container blocks. Congeries
management is implemented as a set of library functions which
extend the program code used to implement the database
interface.

As the functionality of the Grasshopper system evolves to
reliably support multiple containers and their managers at user
level, we intend to:

• Integrate congeries management with container
management, thus creating a generic class of container
designed to host congeries.

• Implement and benchmark database schema which
initially place each congeries into a discrete container.

• Investigate the impact of various combinations of
congeries and containers on database performance.

It is expected that congeries will provide advantages in other
areas of data management (apart from performance), similarly to
those provided by large objects in a system which supports large
and small grained objects as described in [17].

7. CONCLUSION

In this paper we present results which demonstrate the
viability, from the program performance point-of-view, of the
Grasshopper persistent store as an alternative to conventional
operating systems such as Unix. Grasshopper is thus suitable as
a basis for the implementation of conventional-style database
systems which can exploit features of persistent stores not
present in conventional programming environments.

As previously recognised by the developers of conventional
database systems, the placement of data objects has a significant
impact on database performance. To date such control has not
been available to programmers working in persistent
environments. User-level control over placement of persistent
objects may be provided through the use of a new abstraction
called a congeries. Congeries provide support for object
placement, with consequent improvements in I/O performance
for persistent databases. The Grasshopper persistent operating
system is being used as a test-bed for evaluation of this new
abstraction, and experimental results will be the subject of
future reports.

REFERENCES

1. Atkinson, M. and Morrison, R. "Persistent System
Architectures", Proceedings of the Third International
Workshop on Persistent Object Systems, ed J. Rosenberg
and D. M. Koch, Springer-Verlag, pp. 73-97, 1989.

2. Soltis, F. "Inside the AS/400", Duke Press, Loveland,
Colorada, 1995.

3. Stonebraker, M. "Operating System Support for
Database Management", Communications of the ACM,
24(7), ACM, pp. 412-418, 1981.

4. Keedy, J. L. and Rosenberg, J. "Support for Objects in
the MONADS Architecture", Proceedings of the
International Workshop on Persistent Object Systems,
ed J. Rosenberg and D. M. Koch, Springer-Verlag,
1989.

Published in: Proceedings, IASTED International Conference on Software Engineering SE ‘97, IASTED/ACTA Press, ISBN 0-88986-
244-3, San Francisco, U.S.A., pp. 168-172, November 1997.

5. Campbell, R. H., Johnston, G. M. and Russo, V. F.
"Choices (Class Hierarchical Open Interface for Custom
Embedded Systems)", ACM Operating Systems Review,
21(3), pp. 9-17, 1987.

6. Dasgupta, P., Chen, R. C., Menon, S., Pearson, M.,
Ananthanarayanan, R., Ramachandran, U., Ahamad, M.,
LeBlanc Jr., R., Applebe, W., Bernabeu-Auban, J. M.,
Hutto, P. W., Khalidi, M. Y. A. and Wileknloh, C. J.
"The Design and Implementation of the Clouds
Distributed Operating System", Computing Systems
Journal, vol 3, 1990.

7. Dearle, A., di Bona, R., Farrow, J. M., Henskens, F. A.,
Lindström, A., Rosenberg, J. and Vaughan, F.
"Grasshopper: An Orthogonally Persistent Operating
System", Computing Systems Journal, 1994.

8. Brown, A. L., Dearle, A., Morrison, R., Munro, D. and
Rosenberg, J. "A Layered Persistent Architecture for
Napier88", Proceedings of the International Workshop
on Computer Architectures to Support Security and
Persistence of Information, ed J. Rosenberg and J. L.
Keedy, Springer-Verlag and British Computer Society,
pp. 155-172, 1990.

9. Koch, B., Schunke, T., Dearle, A., Vaughan, F., Marlin,
C., Fazakerley, R. and Barter, C. "Cache Coherence and
Storage Management in a Persistent Object System",
Proceedings, The Fourth International Workshop on
Persistent Object Systems, pp. 99-109, 1990.

10. Richardson, J. E. and Carey, M. J. "Implementing
Persistence in E", Proceedings of the Third
International Workshop on Persistent Object Systems,
ed J. Rosenberg and D. M. Koch, Springer-Verlag, pp.
175-199, 1989.

11. Singhal, V., Kakkad, S. and Wilson, P. "Texas: An
Efficient, Portable Persistent Store", Persistent Object
Systems, Proceedings of the 5th International Workshop
on Persistent Object Systems, San Miniato, Italy, pp. 11-
33, 1992.

12. Stephens, A. "C Database Development", MIS Press,
New York, 1991.

13. Cattell, R. G. G. and Skeen, J. "Object Operations
Benchmark", ACM Transactions on Database Systems,
17(1), ACM, pp. 1-31, 1992.

14. Pang, H., Carey, M. and Livney, M. "Managing
Memory for Real-Time Queries", SIGMOD, 5/94,
ACM, Minneapolis, Minnesota, USA, pp. 221-232,
1994.

15. Ulusoy, O. and Buchmann, A. "Exploiting Main
Memory DBMS Features to Improve Real-Time
Concurrency Control Protocols", SIGMOD, 25(1),
ACM, pp. 23-25, 1996.

16. Applegate, A. D. "Rethinking Memory Management",
Dr Dobb's Journal, 19(6), 1994.

17. Henskens, F. A., Brössler, P., Keedy, J. L. and
Rosenberg, J. "Coarse and Fine Grain Objects in a
Distributed Persistent Store", Proceedings, Third
International Workshop on Object Orientation in
Operating Systems, IEEE, Ashville, North Carolina, pp.
116-123, 1993.

