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1. INTRODUCTION 

Conventional computer systems implement a dichotomy of 
storage mechanisms: a file store which provides a durable 
repository allowing data to exist after the creating program has 
ceased execution (such data is termed long-term data), and 
virtual memory which provides a repository for data during 
program execution (such data is termed short-term data).  In 
typical conventional systems it is the responsibility of the 
programmer to manage the conversion of data between the 
transient form suitable for virtual memory and the permanent 
form suitable for the file store.  This conversion uses up CPU 
cycles, and can result in data misinterpretation leading to 
reduced data protection. 

Persistent systems, on the other hand, remove the distinction 
between long and short-term data by providing a single set of 
mechanisms for the management of data regardless of its 
lifetime.  Work on persistence to date has largely concentrated 
on implementation of stores which adhere to the properties of 
orthogonal persistence defined in [1].  A much smaller body of 
work has investigated applications which exploit the benefits of 
persistence.  Persistent stores have long been touted as 
alternatives to conventional database systems, but to our 
knowledge no-one, with the possible exception of IBM with the 
AS/400 [2], has actually implemented a database-style 
application interface to a persistent store.  Such an interface 
would rely on the underlying persistent store providing a 
durable repository for data rather than having to provide this 
durability itself, as occurs with conventional database systems. 

On the surface it would seem that a persistent database 
system could be implemented by provision of appropriate 
software which provides the required interface to the persistent 
store.  This approach ignores the performance issues which have 
long been recognised by the database community [3].  In the 
quest for performance, conventional database systems provide a 
durable store by building on or duplicating some of the features 
of the underlying operating system.  For example conventional 
database systems typically implement their own buffer 
management. 

In this paper we present the results of research which 
verifies the performance of the Grasshopper persistent operating 
system compared to Unix executing on the same hardware, and 
then presents techniques which draw on the large body of 
database experience to improve the efficiency of database 
operations when utilising features of an underlying persistent 
store. 

2. PERSISTENCE 

Approaches to implementation of persistent stores have been 
varied, ranging from purpose-built hardware and operating 
systems (for example Monads [4]), through persistent operating 
systems executing above conventional hardware (for example 
Choices [5], Clouds [6] and Grasshopper [7]) to layered 
architectures above conventional hardware and operating 
systems (for example Napier [8] and Casper [9]).  Others have 
built persistent classes into programming languages (for 
example E [10] and Texas [11]), but such implementations do 
not fully satisfy the requirements of orthogonal persistence. 

The Grasshopper persistent operating system [7] provides 
explicit support for orthogonal persistence utilising conventional 
hardware.  It provides three important abstractions: 

• Containers:  Containers provide an abstraction for both 
storage and access to data objects. 

• Loci:  The locus provides an abstraction for execution. 

• Capabilities:  Capabilities provide an abstraction for 
naming and protection. 

These abstractions have been described elsewhere [7] and 
provide useful support for database management.  In particular: 

• Container - a single abstraction for both storage of and 
access to data.  Containers may be larger than the virtual 
address space supported by the underlying hardware.  
The current implementation supports containers up to 
264 bytes in size.  Mechanisms, such as container 
mapping, provide the ability to access even larger data 
sets.  

• Associated with each container is a manager which is 
responsible for rendering the container’s data available 
to application programs.  These managers are situated at 
user level, allowing container management to be  
tailored to the kind of data stored in the container and 
the patterns of access to this data. 

• Data is durable and may outlive the program which 
created it.  Persistence is a property of the operating 
system and is entirely transparent to the user.  
Consequently programmers do not have to think in 
terms of both storage and access models. 

• Support for the notion of stability.  Grasshopper 
supports the recovery of the system to a consistent state 
in the event of a crash.  This is potentially useful in the 
development of support for database transactions. 
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• Capabilities - capabilities control access to and 
manipulation of objects.  Database data is typically 
shared between multiple applications acting on behalf of 
multiple concurrent users.  Such access must be strictly 
controlled from both the security and concurrency view-
points.  Capabilities achieve this using a single 
mechanism which provides security and access control 
in contrast with two mechanisms used by conventional 
systems. 

Persistent systems have long been criticised for poor 
performance, and since our research is aimed at providing 
database systems which exhibit similar performance to 
conventional database systems, we thought it important to 
perform comparative benchmark testing of the underlying 
operating system.  We used a simple relational database 
implementation [12] as the basis for a close approximation of 
the OO1 [13] database benchmark.  Using this we compared the 
performance of the benchmark operations using an underlying 
Unix file store with its performance using the store provided by 
the Grasshopper persistent operating system. 

3. PERFORMANCE EVALUATION OF GRASSHOPPER 

The OO1 database benchmark exercises a database over a 
number of operations such as random lookup, directed search 
and insertion of new records.  It was chosen for this experiment 
because it was relatively straightforward to implement in a wide 
range of systems, yet provided a useful set of operations on the 
database. 

The OO1 database is defined as two logical records: 

Part: RECORD[id: INT, type: STRING[10], x, y: INT, 
build: DATE] 
Connection: RECORD[from: Part-id, to: Part-id, type: 
STRING[10], length: INT] 

The small database has 20,000 parts with unique IDs 1 
through 20,000.  There are 60,000 connections with exactly 
three connections from each part to other randomly selected 
parts.  The x, y and length fields each contain values randomly 
distributed in the range [0..99999], the type fields have values 
randomly selected from the strings {“part-type0” . . . “part-
type9”}, and the build date is randomly distributed over a 10-
year range.  The random connections are generated so that 90% 
of the connections are randomly selected from the 1% of parts 
that are closest to the original part, with the remainder selected 
from any random part. 

The following operations are carried out on the database: 

Lookup Generate 1,000 random part IDs and fetch 
the corresponding part from the database.  
For each part, call a null procedure written 
in a host programming language, passing the 
x, y position and type of the part. 

Traversal Find all the parts connected to a randomly 
selected part, or to a part connected to it, and 
so on, up to seven hops (total of 3280 parts, 
with possible duplicates).  For each part, call 
a null programming language procedure with 
the value of the a and y fields and the part 
type.  Also measure time for reverse 

traversal, swapping “from” and “to” 
directions to compare the results obtained. 

Insert Enter 100 parts and three connections from 
each to other randomly selected parts.  Time 
must be included to update indices, or other 
access structures used in the execution of 
lookup and traversal.  Call a null 
programming language procedure to obtain 
the x, y position for each insert.  Commit the 
changes to disk. 

The OO1 benchmark specifies two sizes of database; small 
as described above with 20,000 parts and 60,000 connections, 
and large, scaled by a factor of 10 with 200,000 parts and 
600,000 records.  A third size, huge, with 2,000,000 parts and 
6,000,000 connections is specified, but not used for this 
experiment. 

The database was set up as a simple physical storage model 
based on B+-tree indexes and implemented at the application 
level using the C language.  It consisted of four levels: 

• The physical storage level. The tables and their indexes 
were each implemented as separate files. 

• The file and index management level.  Access and 
management of the files were supported through a data 
file management module and a B-tree management 
module. 

• The database management level.  The database 
management module abstracts over details of file and 
index management. 

• The application level.  Operations on the database such 
as database creation, lookup, traversal, and insertion 
were implemented at the application level. 

The datafile, B-tree and database management software was 
based on a database management project written by Stephens 
[12] for a MS-DOS system, and adapted by us for the Unix and 
Grasshopper environments. 

Three implementations were developed making only those 
changes which were absolutely necessary for the 
implementation to run in its particular environment, thus 
reducing the effect of coding differences on the comparative 
results.  Changes were required to the open, close, read, write, 
and seek operations, but algorithms were not changed and no 
effort was made to take advantage of features of any 
environment.  All testing was performed on a 133 MHz DEC 
Alpha with 64 Megabytes of memory using OSF Unix or 
Grasshopper as appropriate.  Tests performed were: 

• A file-based model where each table and index was 
implemented as a separate file.  This was run using OSF 
Unix. 

• A memory-based model where a file was modelled in 
persistent memory.  All the operations on the database 
remained identical to those used in other tests.  This was 
run using the Grasshopper system. 

• A memory-based model mapped onto memory-mapped 
files.  This was run using OSF Unix. 



Published in:  Proceedings, IASTED International Conference on Software Engineering SE ‘97, IASTED/ACTA Press, ISBN 0-88986-
244-3, San Francisco, U.S.A., pp. 168-172, November 1997. 

 

The application layer, implementing the OO1 database was 
developed in C.  The specification of the database was written in 
the schema language provided with Cdata project and then 
converted to a C program and header files.  

The OO1 database for this experiment consisted of the 
following: 

PART The file of parts as specified in the original 
specification, together with a B-tree index 
on the primary key id. 

CONNECT The file of connections as specified in the 
original specification together with three 
indexes. A B-tree index on the primary key 
(the concatenation of the from and to fields), 
together with separate indexes on the from 
and to fields. 

The results of these experiments are summarised in Table 1. 

The results for the 20,000 part database presented in Table 1 
indicate that the Grasshopper and memory-mapped OSF 
implementations perform the test an order of magnitude faster 
than the file-based OSF version.  This is understandable because 
the Grasshopper and memory-mapped systems do not depend on 
the file system calls with their associated overheads.  Results for 
the 200,000 part database were 33% higher for OSF files, and 
18% higher for the memory mapped and Grasshopper systems.  
Grasshopper could not be tested for the 2,000,000 part database 
because the state of system development did not allow such 
large data sets.  While the results for Grasshopper and the 
memory-mapped file systems were consistently similar, it 
should be noted that memory mapped files do not provide any 
resilience and would be unsuitable for implementing real-world 
database systems. 

These performance figures were achieved using the 
persistent store as a replacement for a file system with no 
attempt to exploit features uniquely provided by the store.  In 
particular no attempt was made to optimise the positioning of 
data to suit the access patterns used in the benchmark tests. 

4. OBJECT PLACEMENT AND PERFORMANCE 

Contemporary computers, when used for data intensive 
applications, provide insufficient primary (virtual or 
computational) memory to contain the entire data set.  This 
limitation, together with the requirement for durable storage, 
results in the need for constant movement of data between 
primary and secondary memory.  Secondary memory is 
generally four orders of magnitude slower than primary 
memory.  Thus program performance is adversely affected by 
operations which require movement of data between memory 
levels.  Clearly it is desirable to maximise the presence of soon-
to-be-accessed data in primary memory, while simultaneously 
minimising data transfer operations.  This is achieved at the file-
system level in conventional database systems by a combination 
of judicious data placement and appropriate buffer management 
[3], and at the virtual memory level by advanced memory 
management protocols [14, 15].  Such placement clusters data 
according to, for instance, its existence within relational tables 
or expected access patterns defined by the database 
administrator. 

In conventional database systems, placement of newly 
created data is achieved when the data is moved from 
(temporary) computational memory to (durable) database 
memory.  Until now such user control over placement has not 
been available for orthogonally persistent stores - in these 
systems data is created, its placement is transparent to 
application programs, and its durability is achieved through its 
being referenced by other persistent data. 

Observation of the data objects created in our earlier 
experiments revealed that: 

• Object placement was according to order of creation.  

• Multiple objects typically exist within the disk I/O 
transfer block. 

• Subsequent object accesses were often not related to 
order of object creation.  The neighbourhood established 
during object creation was thus not necessarily the 
neighbourhood required for minimisation of disk I/O 
during subsequent access to the objects. 

Clearly control over the physical location of data objects is 
necessary to achieve the performance benefits derived from data 
clustering.  In the persistence context such control requires the 
ability to specify placement at the time of object creation. 

Commonly used programming languages provide 
instructions (eg malloc() in C and new in C++) for object 
creation.  These allocate object storage sequentially from a 
single heap, and thus do not provide the level of support 
required for optimal placement.  (Multiple heaps are supported 
by some commercial libraries [16].) 

5. OBJECT PLACEMENT AND CONGERIES 

In a typical database environment, the database designer 
must set parameters which affect the performance of the system.  
These include buffer properties, file locations (possibly over 
different physical disks), clustering of data into and within files, 
use of indexes, and so on.  In performing this task the designer 
must take into account issues such as expected data access 
patterns, size of data, frequency of use, size of memory, number 
of disk drives available and so on.  Many of these are equally 
relevant to databases implemented in persistent systems though, 
of course, persistent systems do not have a direct equivalent to 
files. 

To achieve optimal placement of objects within the 
persistent store we need the ability to: 

• Allocate new blocks of storage with the same size 
and alignment as those used for disk I/O. 

• Organise these blocks to form storage regions 
which we call congeries (a congeries is a gathered 
mass). 

• Nominate the congeries in which a new object is 
created. 
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Operation OSF: Files OSF: Memory Mapped Grasshopper 

Lookup 1.45 0.11 0.11 

Traversal 7.68 0.47 0.47 

Insert 1.70 0.17 0.18 

Total 10.01 0.75 0.76 

TABLE 1:  RESULTS OF THE OO1 BENCHMARK - 20,000 PART DATABASE (TIME IN SECONDS)

Congeries perform a management function for persistent 
databases similar to that of the file in conventional databases.  
At the time of persistent database design, elements of the 
schema are allocated to congeries.  This is analogous to the 
mapping of, for example, tables onto files in conventional 
databases. 

We note that there is no requirement that congeries comprise 
contiguous disk or virtual memory blocks.  Contiguity of the 
storage provided by congeries is achieved by appropriate 
management rather than by the physical location of its 
component blocks (in the same way as non-contiguous physical 
memory pages may be used to implement contiguous virtual 
memory). 

The addition of an extra parameter to the call used to create 
objects allows identification of the congeries to which the object 
belongs.  Congeries management requires facilities to: 

• Expand the congeries size by adding new blocks. 
• Add a new object to the congeries. 
• Delete an object from the congeries. 
• Garbage collect the congeries. 
• Release blocks from the congeries. 

In practice congeries may be implemented using library 
functions, even where there is no support for multiple heaps.  
The allocation of a newly created object to a congeries may 
either be automatic (based, for instance, on database designer 
specification combined with the relational table to which the 
object belongs), or through the provision of dedicated 
programming language instructions. 

6. CONGERIES AND GRASSHOPPER 

The above abstractions provide the fundamentals on which 
to build more fine-grained control over object management, in 
particular in the context of this paper, object placement. 

Currently, because of the state of development of the 
Grasshopper Operating System, we are forced to implement 
database systems within a single container.  Of necessity, then, 
congeries form subsets of container blocks.  Congeries 
management is implemented as a set of library functions which 
extend the program code used to implement the database 
interface. 

As the functionality of the Grasshopper system evolves to 
reliably support multiple containers and their managers at user 
level, we intend to: 

• Integrate congeries management with container 
management, thus creating a generic class of container 
designed to host congeries. 

• Implement and benchmark database schema which 
initially place each congeries into a discrete container. 

• Investigate the impact of various combinations of 
congeries and containers on database performance. 

It is expected that congeries will provide advantages in other 
areas of data management (apart from performance), similarly to 
those provided by large objects in a system which supports large 
and small grained objects as described in [17]. 

7. CONCLUSION 

In this paper we present results which demonstrate the 
viability, from the program performance point-of-view, of the 
Grasshopper persistent store as an alternative to conventional 
operating systems such as Unix.  Grasshopper is thus suitable as 
a basis for the implementation of conventional-style database 
systems which can exploit features of persistent stores not 
present in conventional programming environments. 

As previously recognised by the developers of conventional 
database systems, the placement of data objects has a significant 
impact on database performance.  To date such control has not 
been available to programmers working in persistent 
environments.  User-level control over placement of persistent 
objects may be provided through the use of a new abstraction 
called a congeries.  Congeries provide support for object 
placement, with consequent improvements in I/O performance 
for persistent databases.  The Grasshopper persistent operating 
system is being used as a test-bed for evaluation of this new 
abstraction, and experimental results will be the subject of 
future reports. 
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