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Abstract 
This paper describes our experiences with the development of a Distributed Shared 
Memory (DSM) based on a single, very large, paged virtual memory space distributed 
across an arbitrary number of discrete nodes connected to a network of homogeneous 
computers.  The DSM supports two object granularities: coarse-grain objects called 
modules and fine-grain objects called segments.  We show that support for both 
modules and segments has advantages in the areas of naming and location, protection, 
data consistency, transaction management and garbage collection. 

1  Introduction 
This paper describes our experiences with the development of a Distributed Shared Memory 
(DSM) based on a single, very large, paged virtual memory space distributed across an arbitrary 
number of discrete nodes connected to a network of homogeneous computers.  DSMs allow 
processes executing on loosely coupled nodes to share data by reference, such that knowledge of 
the address of data in the shared memory space is sufficient to allow a process to access the data.  
The DSM paradigm has been implemented by other researchers to form shared memory systems, 
for example Ivy [20] and Memnet [8].  The main aim of these implementations was the 
exploitation of parallel algorithms on loosely-coupled processors, but their architectures were not 
expandable to large shared virtual memories, and were not oriented towards supporting 
persistence. 
The DSM described here, on the other hand, implements a global distributed store, enabling users 
logged on to loosely-coupled computers to share all resources including programs, data, and 
devices.  The DSM has several important properties relating to the user's perception of the services 
provided by a networked node compared to those offered by a discrete node.  These are: 

(1) The distribution of the system provides extra functionality without compromising the 
functionality provided by a discrete, non-networked machine. 

(2) A resource is identified by name.  This name defines the resource only, and not its 
current location.  As a consequence the resource may be moved to another node and still 
be accessed using its original name. 

(3) All users at all nodes have a coherent view of shared data. 
(4) The owner of a resource has control over access to the resource on a network-wide 

basis. 
(5) Programs developed for use on a non-networked machine execute without modification 

over the network. 
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Such an implementation of DSM provides a single network-wide virtual memory space in which 
all program code and data is stored.  This virtual memory provides a store which complies with the 
orthogonal persistence principles of persistence independence, data type independence, and 
management orthogonality [2].  Since all processes execute within this virtual memory space, the 
conventional process address space protection scheme used by systems such as Unix cannot be 
used.  A two-level capability-based protection technique enforced by the architecture is used to 
provide control over access to the programs and data in the store [17]. 
The system supports two object granularities: coarse-grain objects called modules (which are 
roughly equivalent to files in conventional systems) and fine-grain objects called segments 
(containing for instance, procedures, records, characters or integers) [6].  Programmers and 
compilers see the virtual memory as a collection of segments of arbitrary size.  These segments are 
mapped onto the paged virtual address space in such a way that page and segment boundaries are 
orthogonal [16].  All segments have the same basic format, so access to them is handled in a 
uniform manner.  Segments contain data, and capabilities for other segments, allowing arbitrarily 
complex graph structures of segments to be constructed.  Access to a segment is controlled by a 
segment capability which defines the segment start address, length, and type and access 
information. 
Segments are grouped together into information-hiding modules which present a purely procedural 
interface, as proposed by Parnas [23].  Access to a module is controlled by a module capability 
which contains a unique network-wide name for the module and a set of access rights for the 
interface procedures which may be invoked when the capability is presented.  Such procedures in 
turn may access the encapsulated data segments. 
Processes are orthogonal to modules.  A process may call an arbitrary number of modules and such 
calls may be arbitrarily nested.  Similarly, many processes may concurrently execute within any 
one module.  This structure is fully described in [18]. 
The DSM virtual memory space is of sufficient size to obviate the need ever to re-use the ranges of 
addresses previously allocated to deleted modules.  Hence the address of a module may be used as 
the module's name, uniquely identifying it and the code or data segments encapsulated by it. 
Support of two object granularities has advantages in the areas of: 

• naming and location 
• protection 
• data consistency 
• transaction management 
• garbage collection 

In this paper we first describe the general DSM architecture and the relevant implementation 
details.  We then address in more detail the five areas listed above and discuss the implication of 
dual object sizes on issues including performance, flexibility and ease of implementation. 

2  Overview of DSM Architecture 
The DSM [15], which provides a distributed persistent store, was constructed above a purpose-
built microcoded computer, known as Monads-PC, which provides a 60 bit wide paged virtual 
memory [24].  Both diskless nodes and nodes with attached disks are supported.  Nodes with disks 
act as servers for the pages of the objects stored on those disks. 
In this section we describe the structure of the virtual memory and how this may be accessed in a 
distributed environment. 
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2.1  Memory Management 
Two mappings are required in order to implement virtual memory.  The first is a mapping from 
virtual addresses to main memory addresses for pages currently in main memory, and the second is 
a mapping from virtual addresses to disk addresses for pages not in main memory.  The 
conventional approach to virtual memory uses the same data structures and mechanisms, based on 
page tables, for both of these mappings.  Our model, on the other hand, decouples the virtual 
address to main memory address mappings (which are needed for every memory reference) from 
the virtual address to disk address mappings (which are only needed in page fault resolution) [26]  
The importance of this for distribution is that each node maintains a main memory page table 
proportional in size to the size of its own main memory, and the disk page tables for disks mounted 
at the node.  In contrast other DSM implementations (eg [8, 20]) require a data structure defining 
the status and location of every virtual memory page to be maintained by every node.  Such 
structures are proportional in size to that of the distributed virtual memory. 
To minimise the size of these page tables, other DSM systems partition the address space in which 
a process executes into local and shared areas.  Only the shared memory partition is implemented 
as DSM.  Using this technique, the developers of these systems were able to simplify 
communication between parallel processes, but could not provide totally transparent distribution of 
all data.  The method used to manage the virtual memory in our architecture allows the entire 
virtual memory space to be implemented as DSM, distributed across a network of nodes. 
In the Monads-DSM system the virtual memory encompasses the attached disks and main memory 
of all machines network-wide.  Thus virtual addresses can refer to any byte on any disk connected 
to any node.  In order to resolve a page fault, the disk location of the page must be determined.  
The first step involves determining which of the attached disks contains the page. 
Every node is assigned a unique node number when it is manufactured.  This is a logical node 
identifier, and is not the physical network address of the node.  Disk drives attached to the nodes 
may be partitioned as part of the formatting operation, thus creating several logical disks on a 
single physical device.  Each of these partitions is known as a volume.  When a volume is created 
it is assigned a unique node+volume number which is formed by concatenating the creating node 
number with the within-node volume number.  This node+volume number is used to define the 
range of virtual addresses that is stored on the volume by using it as the high order bits of all such 
addresses. 
The range of addresses stored on a volume is further divided into areas corresponding to the logical 
entities such as processes, files and programs that exist on the disk.  These areas are called address 
spaces, and are identified by address space numbers.  Address spaces are further divided into fixed 
size pages identified by page numbers.  A virtual address, then, consists of five parts, as shown in 
figure 1. 

Volume Number Within Volume Address Space Number OffsetWithin AS PageNode No.

 

Figure 1.  The Structure of a DSM Virtual Address. 

All the pages of an address space are stored on a single volume.  Each address space has its own 
disk page table which maps from virtual addresses to disk addresses for that address space.  This 
table is contained within the address space and pointed to from the root page of the address space.  
Thus every address space is self-defining, and efficient use is made of disk space because disk 
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pages are not allocated to unused virtual pages.  Address space zero for each volume is special.  It 
contains red-tape information for the volume, including the free space map and the volume address 
space table listing the disk locations of the root page for each address space on the volume.  Each 
module and stack (which represents a process) resides in a separate and unique address space, and 
is named according to the identity of the address space within which it resides.  An address space is 
never re-used, even if the module or stack residing in it is deleted, so the name of a module or 
stack is unique for the life of the system.  Access to a module is permitted on presentation of a 
valid module capability.  The architecture protects module capabilities from illegal modification or 
use.  The address space number for a module is embedded in the module capability used to access 
it, together with other fields which define the nature of the access permitted. 
Programmers and compilers see the virtual memory as a collection of segments which may be of 
arbitrary size, from one byte to 256 Mbytes in the Monads PC.  Because segment boundaries are 
orthogonal to page boundaries [16], excessive internal fragmentation is avoided.  Segments contain 
data and capabilities for other segments, with the result that complex graph structures can be 
constructed.  Access to a segment is permitted on presentation of a valid segment capability.  This 
capability defines the full virtual address of the start of the segment and the segment length and is 
protected from arbitrary modification.  The basic addressing mode supported by the architecture 
involves the specification of an offset relative to a segment capability. 
Segments are grouped together into the previously described modules.  Presentation of a valid 
module capability allows a process to open the module, after which the segment capabilities which 
allow access to its interface routines and internal data become available.  These segment 
capabilities are stored in a special module call segment (MCS) which is initialised after access to 
the module root page.  The significance of these structures will become apparent in the following 
sections. 

2.2  Distributed Access 
The DSM model is based on a single very large virtual memory space which encompasses all 
nodes in the network.  Processes running on these nodes have access to the whole virtual memory 
space (provided they can present an appropriate capability), without the need for knowledge of the 
storage location of the program code and data they access.  This model was initially proposed in 
[1],  Related schemes have been reported in the literature [8, 20].  However these schemes allow 
processes to share only a limited portion of their total address space, and still maintain a separate 
file store. 
The Monads DSM is designed to support the interconnection of Monads-PC computers using a 
local area network (LAN) [13].  The kernel at each machine maintains knowledge of the mappings 
between the network addresses of connected nodes and their Monads node numbers using an 
up/down protocol similar to ARP/RARP [7].  Since the processors are loosely coupled, there is no 
physically shared memory, so the underlying communications system is used to provide an 
abstraction of a shared memory space. 
During execution a process accesses a sequence of virtual addresses.  If the virtual page containing 
such an address is in the local node's page cache (main memory), the access may proceed.  If not, a 
page fault condition applies.  To resolve the page fault, the local kernel examines the <node 
number><volume number><address space> fields of the faulting address, and by consulting 
internally maintained tables it determines whether the page fault may be resolved by a local disk 
access.  If not, the kernel causes transmission of a message requesting provision of the page.  In 
this sense each node views the other nodes in the network as collections of volumes. 
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3  Naming and Location Transparency 
As described in section 2.1, a module is named according to the address space in which it resides.  
This defines the position of the module in the virtual memory space.  The module name is 
embedded in the capabilities used to address the module.  Any node with attached disks acts as a 
server for the pages of the modules stored on those disks.  During the life of the system, it may 
become necessary to mount disks on different nodes.  For example a node may fail; mounting its 
disks on another node would make the data on those disks available.  It would also be beneficial to 
efficient use of network bandwidth to move the modules owned by a user to his new home node 
when his place of work changes.  As described in section 2.2, the module location information 
embedded in addresses is crucial to efficient access to their pages.  Module addresses form part of 
the capabilities used to control access to them.  Since no attempt is made to record the owners of 
such capabilities, it is important that the name of a module is not modified when the storage 
location for the module changes.  If this were not done, the movement of a module would render 
invalid all existing capabilities for it.  A change of storage location for a module occurs if either 

(1) the volume containing the module is mounted on another node, or 
(2) the module is moved to another volume. 

3.1  Moving Volumes 
Page request messages are typically transmitted to the node whose identity is embedded in the page 
address.  Prior to transmitting a request for provision of a page, however, the kernel checks local 
tables which map moved volumes to their new mounting node.  These tables are maintained on a 
need to know basis using a kernel message protocol.  If necessary the destination node for the page 
request message is adjusted accordingly. 

3.2  Locating Moved Modules 
Access to a module which has been moved between volumes is detected when the module is 
opened.  Advisory information regarding the new location is obtained from the module capability 
and used to direct the page request message.  If such advisory information proves to be incorrect, 
the creating node is queried, and if possible it provides forwarding information maintained on the 
original storage volume.  In the case that neither of these attempts is successful, a broadcast 
message is used in an attempt to locate the module.  Location of a moved module therefore incurs 
an overhead compared to the location of a non-moved module. 
Once the module has been located and opened, subsequent page requests occur as a result of page 
faults generated by accesses to the segments within the module.  Since such page requests occur 
much more frequently than open module requests it is important that location of the server node is 
efficient. 
At the time of such page faults all that is available to the page fault handler is the faulting virtual 
address, which contains the original location of the module.  The kernel could maintain a table of 
moved modules and their current locations [3].  However, this table would have to be searched on 
every page fault, resulting in an overhead for all requests, including those for non-moved modules.  
We therefore use a different approach as described in the following section. 

3.3  Efficient Access to Moved Modules 
The essence of the technique presented in this section is that the identity of an open module may be 
temporarily altered to reflect its current location, thus allowing efficient access to the pages of the 
module [12]. 
The implementation of this technique for accessing moved modules requires that: 
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(1) A new unique address space number defining the new node, volume, and (logical) 
within-volume address space is allocated to a moved module.  This number is called the 
current name for the module, and is used for internal system purposes only.  The name 
by which the module is known to users remains the name allocated when the module 
was created, and as a result all existing module capabilities still allow access to the 
module.  The current name may be viewed as an alias for the original name. 

(2) An additional table is maintained in the red tape of each volume.  This table is called the 
Foreign Address Space Table (FAST), and contains mappings between module names 
and current names for moved modules currently stored on the volume, as shown in 
figure 2.  The FAST is accessed using the original module name as a key, and allows the 
current name for any moved module stored on the volume to be determined. 

(3) When a module is moved its volume directory entry at the new owner node contains the 
current name for the module. 

(4) When a module is moved from a volume the volume directory of the source volume is 
changed to link the current name used on the source volume to a forwarding address in 
the same manner as described in the previous section. 

(5) The system is able to detect that a newly opened module has been moved from its 
original storage volume. 

When a module is opened, the root page of the module must be accessed to allow creation of the 
MCS.  When the MCS is set up the system determines whether the module is stored on its original 
volume or has been moved to a different volume. If the module has been moved, the system is 
informed of its new location when it obtains the module's root page. 
Efficient access to the pages of the module is achieved by altering the segment capabilities used to 
access the module's data as they are stored in the MCS.  This alteration replaces the original node 
number, volume number, and address space number fields with values indicating the current node, 
volume, and address space numbers.  Subsequent accesses to these data segments generate virtual 
addresses containing the current name rather than the original name; as a result the kernel can 
obtain pages from these segments as if the module had never been moved.  Since all the segments 
of a module are contained within the module, and pointers to data within a module are relative to 
the address space in which it resides, these pointers do not need to be changed as a result of the 
change of address space name. 

Module Name Current Name

Creating Node, 
Volume, and Address 

Space Number of Module

Current Node, Volume, 
and (Logical) Address 

Space Number of Module

 

Figure 2.  The Structure of a Typical Foreign Address Space Table Entry. 

Significantly, the use of a Foreign Address Space Table (FAST) in accessing the segments stored 
in moved modules allows page faults for accesses to such segments to be resolved efficiently 
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whilst not increasing the overhead of resolution of page faults for segments stored in non-moved 
modules. 
The encapsulation of small objects (segments) within large objects (modules) has allowed us to 
incur all of the overheads of locating moved (and non-moved) objects at the time at which a 
module is opened, rather than the time at which page faults occur.  Thus the use of two object sizes 
has provided a considerable performance advantage. 

4  Protection 
In a conventional distributed system protection is provided by a combination of a separate 
addressing environment for each process and the file system.  In a distributed shared memory such 
as that described above the addressing environment for every process is the entire shared memory.  
As a result, in the absence of some additional protection mechanism, every process has access to 
every byte of data stored in the network. It is therefore necessary to provide a protection 
mechanism to control access to data.  Given that data is logically grouped into structures such as 
arrays, procedures, etc., it would seem appropriate to support protection at this (small object) level. 
A suitable means for providing such protection is the use of capabilities [9].  We have described 
above that access to segments is controlled by segment capabilities.  The right to access a segment 
must be checked on every access.  It is therefore essential that the mechanism be simple and 
efficient.  In the case of our DSM this has been achieved by provision of hardware support for 
capability-based addressing [24]. 
There are clearly advantages from a software engineering point of view in support for information 
hiding modules.  Such modules hide implementation details and therefore simplify maintenance 
and improve reliability.  They encourage the construction software of systems in a modular fashion 
[23].  However, in many object-based systems this encapsulation may be circumvented and object 
data directly manipulated. 
Because we provide direct support for coarse-grain objects it is possible to guarantee the integrity 
of modules by enforcing that access to their data is through the provided interface routines [19].  
This is achieved by supporting a second level of capability, called a module capability.  A module 
capability includes the name of the module referenced and a list of the interface procedures 
(methods) which may be accessed by the holder of the capability.  This is implemented by storing 
each interface procedure in a separate segment and ensuring that only appropriate segment 
capabilities are made accessible to the process at the time the module is opened. 
The provision of such flexible protection for modules without sacrificing efficient access at the 
data structure level is only possible because of the separation of the two granularities of object.  In 
a system which supports only one granularity of object, all of the overheads of method invocation 
are incurred for all object accesses [10]. 

5  Consistency 
A major issue in the design of a global DSM for a persistent environment is the ability to recover a 
consistent state after a crash.  According to the DSM protocol, current versions of parts of an 
object may be spread over several nodes in the network.  The failure of any of such nodes can 
result in the loss of parts of the current version of the object, with a subsequent loss of object 
integrity.  In addition, modifications to other objects may have been based on the lost changes.  
Although these additional objects may be self-consistent after some failure, they may not be 
consistent with data contained in other objects [14]. 
A technique for solving this problem is to ensure that the store moves from one consistent state to 
another.  This can be achieved by periodically copying the entire store to a stable medium, such as 
disk.  This process is usually called checkpointing and a number of proposals for efficient 
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checkpointing have been described in the literature [5, 21, 25].  During such a checkpoint all 
operation on the store must cease. 
In many circumstances checkpointing the entire store as a single operation may have unacceptable 
performance implications, particularly for a distributed store supporting concurrent access.  A 
better approach is to checkpoint regions of the store independently [14].  However, as we have 
indicated above, there may be relationships between objects within the store.  It is essential that 
related objects are checkpointed at the same time to ensure that they are consistent with each other.  
Such groups of related objects have been referred to as associations [28]. 
Maintaining associations based on fine-grain objects rapidly results in large associated sets.  Given 
that we have architectural support for grouping related fine-grain objects to form coarse-grain 
objects, it becomes possible to maintain associations at the coarse-grain level.  These associated 
sets are considerably smaller than those for fine-grain objects.  Performance is improved for two 
reasons.  First, the data structures used to store association information are significantly reduced in 
size.  Second, coarse-grain objects may be checkpointed at the virtual page level, with each write 
operation on a virtual page potentially checkpointing multiple fine-grain objects. 

6  Transactions 
The two different object granularities are also beneficial  for transaction processing [11].  The 
basic form of (nested) transactions uses segments.  Applications requiring a higher degree of 
parallelism than is possible without semantic knowledge use object-level transactions.  
Basic transactions [4] use segments as the entities for concurrency control and recovery.  When a 
transaction loads a segment capability for the first time, the segment is read-locked.  The lock data 
structures are part of the segments thus simplifying the management and the addressing of the lock 
information.  The first update of a segment within a transaction leads to the acquisition of a write-
lock and to the writing of a before-image into a specific address space.  A commit of a transaction 
releases all the locks and before-images, whereas an abort restores all segments to their original 
values and then releases all locks. 
Object-transactions allow a higher degree of parallelism by using commutativity relationships 
between routines of objects.  Each call to such a routine is executed as a basic transaction.  
Segment-level locks are released at the end of such a call and routine-specific (semantic) locks are 
held until the end of the whole transaction.  The execution model follows the concept of 
generalised multi-level transactions [22].  Aborts of object-transactions must be handled by the 
execution of logical undo operations in contrast to the restoration of segments in basic transactions. 

7  Garbage Collection 
Garbage collection is an important issue for single level stores such as DSMs.  In most systems 
objects contain both data and references to other objects.  Garbage collection involves traversing 
the graph of objects from some root and removing all unreachable objects.  This is of particular 
importance in DSM systems because it releases parts of the store for re-use.  The disk space 
associated with garbage is also released for re-use. 
There are two basic approaches to garbage collection: 

1. Garbage collection of the entire store as a single operation.  This is extremely expensive 
for large distributed stores and may not be possible, if for example, one of the nodes is 
unavailable. 

2. Garbage collect regions of the store independently.  This reduces the impact of garbage 
collection on users of the store. 

The second approach seems more appealing.  The issue is the criterion for the division of the store 
into regions.  A common approach is to divide into regions based on time of object creation.  Such 
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collectors are usually called generation-based garbage collectors.  Proponents of this technique 
argue that most recently created objects are temporary and will soon become garbage.  They 
segregate such objects and maintain a table of references between the segregated region and older 
objects.  However, eventually the entire store must be garbage collected in order to remove 
unreachable older objects [27]. 
An alternative is to group objects according to their logical relationships.  Our two level coarse and 
fine grain model effectively provides such a grouping automatically.  No additional data needs to 
be maintained in order to garbage collect such groups.  In our DSM, references between fine-grain 
objects within different coarse-grain objects are prohibited.  Therefore it is possible to garbage 
collect each coarse-grain object independently.  If required it is possible to perform generation-
based garbage collection within modules. 

8  Conclusion 
Figure 3 contains a summary of the most significant differences between coarse-grain and fine-
grain objects in the Monads DSM. 
 

Coarse-Grain Objects: Modules Fine-Grain Objects: Segments 
major system objects components of major objects 

enforcement of information hiding programming language-specific usage 

user-level protection:  
module capabilities 

system-level protection: 
segment capabilities 

virtual address space allocation heap space allocation 

size between 1 and 65536 pages  size between 1 byte and 256M-bytes 

independent placement and migration clustered within large object 

long unique object ids short reusable pointers 

cross references to other large objects local references to segments within same 
large object 

explicit deletion rule based on ownership automatic garbage collection based on 
reachability 

flexible semantic concurrency control efficient transactional read/write concurrency 
control 

transaction recovery based on inverse 
operations 

transaction recovery based on before images 

Figure 3. A Summary of Differences between Coarse and Fine Grain Objects. 

We have described a system based on a distributed shared memory which supports two 
granularities of object.  Segments are fine-grain objects which are used to hold logical entities such 
as structures, arrays, procedures, etc.  Logically related segments are grouped together to form 
coarse-grain information-hiding objects called modules. 
It was shown that there are significant advantages in supporting two granularities of object.  First, 
coarse-grain objects provide a convenient and efficient mechanism for naming and locating data in 
a distributed system.  Second, different protection paradigms may be supported for each object 
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granularity.  This allows efficient access for fine-grain objects without sacrificing flexibility for 
coarse-grain objects.  Third, coarse-grain objects assist with limiting the cost of checkpointing by 
allowing groups of objects to be checkpointed independently.  Fourth, fine-grain objects are used 
for efficient transaction management whereas course-grain objects allow increased parallelism 
using object transactions.  Finally, coarse-grain objects provide an appropriate clustering of fine-
grain objects for the purposes of garbage collection. 
Most of the mechanisms described in this paper have been implemented in a distributed network of 
Monads-PC computers.  Work is continuing in the areas of distributed checkpointing mechanisms 
and object availability techniques. 
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