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Abstract 

For ten years researchers have been attempting to construct programming language 
systems that support orthogonal persistence above conventional operating systems.  
This approach has proven to be poor; researchers invariably construct a complete 
abstract machine above the operating system with resulting loss of efficiency.  This 
paper describes a new approach, the construction of an operating system designed to 
support orthogonal persistence.  The operating system, Grasshopper, relies upon 
three powerful and orthogonal abstractions: containers, loci and capabilities. 
Containers provide the only abstraction over storage, loci are the agents of change, 
and capabilities are the means of access and protection in the system. This paper 
describes these three fundamental abstractions of Grasshopper, their rationale and 
how they are used.   

1. Introduction 

The aim of the Grasshopper project is to construct an operating system that supports 
orthogonal persistence [3].  This begs two questions, what is orthogonal persistence and why 
does it require support from an operating system? 

The two basic principles behind orthogonal persistence are: 

• that any object may persist (exist) for as long, or as short, a period as the object 
is required, and 

• that objects may be manipulated in the same manner regardless of their 
longevity. 

The requirements of a system which supports orthogonal persistence can be summarised as 
follows. 

• Uniform treatment of data structures: 
 Conventional programming systems require the programmer to translate data 

resident in virtual memory into a format suitable for long term storage.  For 
example, graph structures must be flattened when they are mapped onto files or 
relations; this activity is both complex and error prone.  In persistent systems, 
the programmer is not required to perform this mapping since data of any type 
with arbitrary longevity is supported by the system. 

• Location independence: 
 To achieve location independence, data must be accessed in a uniform manner, 

regardless of the location of that data.  This principle is the cornerstone of 
virtual memory – the programmer does not have to be concerned whether the 
data is in RAM or on disk; the data is accessed in a uniform manner.  In 
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distributed persistent systems, location independence is extended to the entire 
computing environment by permitting data resident on other machines to be 
addressed in the same manner as local data [14, 15, 21, 46, 47].  This approach 
is also followed in distributed shared memory systems [42]. 

• Data resilience: 
 All systems containing long-lived data must provide a degree of resilience 

against failure.  In conventional operating systems, tools such as fsck in Unix 
permit the repair of long lived data (the file system) after a system crash.  
Persistent systems must also prevent the data stored in them becoming corrupt 
should a failure occur.  However, the problem of resilience is more acute with 
persistent systems.  In a conventional file system each file is essentially an 
independent object, and the loss of a single file following a system crash does 
not threaten the integrity of the overall system. In a persistent system, there 
may be arbitrary cross references between objects and the loss of a single 
object can be catastrophic.  In addition, since one of the goals of persistence is 
to abstract over storage, resilience mechanisms should not be visible at the user 
level.  In this sense the problem of recovery within a persistent system is more 
closely related to recovery in database systems [2]. 

• Protection of data: 
 Persistent systems provide a large persistent store in which all data resides and 

against which all processes execute.  A process may only access data for which 
it holds access permission.  Failure by the operating system to provide a 
protection mechanism could result in erroneous processes corrupting data 
owned by other users.  Therefore a protection mechanism must be provided to 
protect data from accidental or malicious misuse.  In persistent systems this is 
typically provided via the programming language type system [31], through 
data encapsulation [28], using capabilities [11] or by a combination of these 
techniques. 

To date, most persistent systems, with a few exceptions [6, 9, 38], have been constructed 
above conventional operating systems.  Implementors of persistent languages are invariably 
forced to construct an abstract machine above the operating system, since the components of 
a persistent system are different in nature to the components of a conventional operating 
system.  For example, in [43], Tanenbaum lists the four major components of an operating 
system as being memory management, file system, input-output and process management.  In 
persistent systems, the file system and memory management components are unified.  In 
many operating systems, input-output is presented using the same abstractions as the file 
system; clearly this is not appropriate in a persistent environment.  Some persistent systems 
require that the state of a process persists.  This is not easily supported using conventional 
operating systems in which all processes are transitory.  

The principal requirements of an operating system that supports orthogonal persistence may 
be summarised as follows [45]: 

i. Support for persistent objects as the basic abstraction:  persistent objects 
consist of data and relationships with other persistent objects.  The system must 
therefore provide a mechanism for supporting the creation and maintenance of 
these objects and relationships. 

ii. The system must reliably and transparently manage the transition between long 
and short term memory. 
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iii. Processes should be persistent. 
iv. Some protection mechanism to provide control over access to objects must be 

provided. 

2. Grasshopper 

Grasshopper is an operating system that provides support for orthogonal persistence. It is 
intended to run on a conventional hardware base, which has constrained the design of the 
system. A conventional hardware platform implies the lack of sophisticated features for the 
control of memory other than page-based virtual memory. Hence all notions of access control 
and structuring in Grasshopper are based on page-oriented virtual memory.  

Grasshopper relies upon three powerful and orthogonal abstractions: containers, loci and 
capabilities. Containers provide the only abstraction over storage, loci are the agents of 
change (processes/threads), and capabilities are the means of access and protection in the 
system.  

Conceptually, loci execute within a single container, their host container. Containers are not 
virtual address spaces.  They may be of any size, including larger than the virtual address 
range supported by the hardware.  The data stored in a container is supplied by a manager. 
Managers are responsible for maintaining a consistent and recoverable stable copy of the data 
represented by the container. As such, they are vital to the removal of the distinction between 
persistent and volatile storage, and hence a cornerstone of the persistent architecture.  

This paper describes the three fundamental abstractions of Grasshopper, their rationale and 
how they are used. Section 3 describes the memory model (containers), Section 4 describes 
the process model (loci). Data sharing is described in Section 5. Section 6 describes managers 
and how they operate. Sections 7 deal with protection and the capability system. How the 
abstractions are combined to provide resilient persistent storage is described in Section 8. The 
paper concludes with some examples of how the abstractions provided by Grasshopper may 
be used. 

3. Containers 

In systems which support orthogonal persistence the programmer does not perceive any 
difference between data held in RAM and that on backing store.  This idea leads naturally to a 
model in which there is a single abstraction over all storage.  A major issue that arises is the 
addressing model supported by the system for this abstraction.  There appear to be three basic 
models: 

1. the single flat address space model, 
2. the single partitioned address space model and 
3. the fully partitioned address space model. 

Models 1 and 3 represent opposite ends of the design spectrum whilst model 2 is a hybrid 
architecture.  These models are described in the following sections. 

3.1. Single flat address space 

In the first model all data resides in a single flat address space with no structure is imposed 
upon it. This provides an addressing environment similar to that provided to a conventional 
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Unix process.  This model is used to implement the Napier88 persistent programming system 
[32]. 

The construction of very large stores using this technique was, until recently, not feasible on 
conventional architectures due to address size limitations.  However, the advent of machines 
such as the DEC Alpha [41] and the MIPS R4000 [17] which (logically) support a 64 bit 
address has created renewed interest in this approach.  A number of research groups have 
suggested that this is an appropriate direction for modern operating systems [22].  Such an 
approach is tempting since it fits in well with the goals of orthogonal persistence, i.e. to 
abstract over all physical attributes of data.  However, there are some difficulties: 

i. Most persistent systems rely upon a checkpointing mechanism to establish a 
consistent state on stable storage such as disk.  If the operating system supports 
a single massive address space, the stabilisation mechanism must either capture 
the entire state of this store at a checkpoint, or record the dependencies 
between processes and data in the store and checkpoint dependent entities 
together.  Even using incremental techniques, the first option could take a 
considerable amount of time due to I/O bandwidth limitations.  The second 
option requires system knowledge of the logical entities stored in the system so 
that dependency information can be maintained. 

ii. If a single address space is shared by multiple processes, the ability to protect 
separate areas of the address space must be provided.  Whilst protection 
systems have been designed for single address spaces [22], they do not provide 
any support for distribution. 

iii. The resulting store would be huge and the management of large stores is 
difficult.  In particular allocation of free space, garbage collection, unique 
naming of new objects and the construction of appropriate navigation tools are 
all more difficult in large flat stores.  These and other difficulties are discussed 
in [34]. 

Solutions to these and other management issues effectively partition the flat address space. It 
would seem that the implementation of a single partitioning scheme would be more efficient 
than the use of separate schemes to support each management requirement 

3.2. Single partitioned address space 

In the second model the notion of a large address space in which all objects reside is retained.  
This address space is, however, partitioned into semi-independent regions.  Each of these 
regions contains a logically related set of data and the model is optimised on the assumption 
that there will be few inter-region references.  Such an approach is the basis of the Monads 
architecture [40].  Provided that control can be retained over the inter-region references it is 
possible to garbage collect and checkpoint regions (or at least limited sets of regions) 
independently, alleviating problems (i) and (iii) above [5, 39].  In addition, the partitioning 
provides a convenient mechanism for the generation of unique object names [14]. 

The major problem that remains with this approach is the issue of protection.  It is necessary 
to restrict the set of addresses which can be generated by a process.  One possibility is to 
provide special-purpose hardware to support protection in a partitioned store; an 
implementation of such an architecture has been described previously in [38].  However, 
conventional architectures provide only page-based protection and therefore protection 
mechanisms similar to those proposed for flat stores must be employed. 
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3.3. Fully partitioned address space 

In the third model the store is fully partitioned.  Each partition is logically equivalent to an 
instance of the flat address space described in 3.1 and defines an independent addressing 
environment; there is no global address space. As we shall see, however, there is no reason 
for the size of a partition to be restricted by the address size of the host architecture. 

In this model, processes execute within a single partition and may only access the data visible 
in that partition.  The use of multiple independent partitions has several advantages.  Firstly, 
partitions may be of arbitrary size, not restricted (individually and collectively) by the size of 
a global address space.  Secondly, partitions are truly independent and not part of some larger 
structure, allowing different management techniques to be implemented for each region. 
Lastly, partitions may have names and operators may be provided that operate over them. 

Grasshopper adopts this third approach by implementing regions called containers.  
Containers are the only storage abstraction provided by Grasshopper; they are persistent 
entities which replace both address spaces and file systems.  In most operating systems, the 
notion of a virtual address space is associated with an ephemeral entity, a process, which 
accesses data within that address space.  In contrast, containers and loci are orthogonal 
concepts.  A Grasshopper system consists of a number of containers which may have loci 
executing within them.  At any time a locus can address only the data visible in the container 
in which it is executing. 

Facilities must be provided which allow the transfer of data between containers.  The 
mechanisms provided in Grasshopper are mapping and invocation.  These are described in the 
following sections. 

4. Loci 

In Grasshopper, loci are the abstraction over execution (processes). In its simplest form, a 
locus is simply the contents of the registers of the machine on which it is executing.  Like 
containers, a locus is maintained by the Grasshopper kernel and is inherently persistent.  
Making the locus persistent is a departure from other operating system designs and frees the 
programmer from much complexity. 

Throughout its life, a locus may execute in many different containers. At any instant in time, 
a locus executes within a distinguished container, its host container.  The locus perceives the 
host container's contents within its own address space.  Virtual addresses generated by the 
locus map directly onto addresses within the host container. A container comprising program 
code, mutable data and a locus forms a basic running program.  Loci are an orthogonal 
abstraction to containers.  Any number of loci may execute within a given container; this 
allows Grasshopper to support multi-threaded programming paradigms.  

An operating system is largely responsible for the control and management of two entities: 
objects, which contain data (containers); and processes (loci), the active elements which 
manipulate these objects. One of the most important considerations in the design of an 
operating system is the model of interaction between these entities. There are two principal 
models of computation called message oriented and procedure oriented [25]. In the message 
oriented model, processes are statically associated with objects and communication is 
achieved through the use of messages. By contrast, the procedure oriented model provides 
processes that move between objects. Processes access objects by invoking them; the invoke 
operation causes a (possibly remote) procedure call to code within the object. By executing 
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this code the process may access data stored within the object. The message oriented model 
cannot be used to efficiently simulate any other computational models.  The procedure 
oriented model is more flexible; for instance, it can easily simulate the message oriented 
model by associating a message passing process with every object.  For this reason, 
Grasshopper uses the procedure oriented model in which a locus may invoke a container 
thereby changing its host container. 

Any container may include as one of its attributes a single entry point known as an invocation 
point. When a locus invokes a container, it begins executing code at the invocation point.  
The single invocation point is important for security; it is the invoked container that controls 
the execution of the invoking locus by providing the code that will be executed.  

The invoking locus provides a parameter block to the kernel mediated invoke operation. This 
parameter block is made available to the code in the invoked container.  Larger amounts of 
data may be passed via an intermediate container.  Appropriate and arbitrarily sophisticated 
communication protocols may be built on top of this simple facility. Since a minimal 
parameter block is the only context that is transferred to the invoked container, invocation is 
therefore inherently low cost.  In this respect, the invoke primitive is very similar to the 
message passing system used in the V-kernel [7]. 

A locus may invoke and return through many containers in a manner similar to conventional 
procedure calls.  The Grasshopper kernel maintains a call chain of invocations between 
containers.  Implicitly each locus is rooted in the container representing the kernel: when a 
locus returns to this point it is deleted.  However some loci may never need to return to the 
container from which they were invoked.  Such a locus may meander from container to 
container.  In such circumstances, an invoke parameter allows the locus to inform the kernel 
that no return chain need be kept. 

5. Container mappings 

The purpose of container mapping is to allow data to be shared between containers. This is 
achieved by allowing data in a region of one container to appear in another container. In its 
simplest form, this mechanism provides shared memory and shared libraries similar to that 
provided by conventional operating systems.  However, conventional operating systems 
restrict the mapping of memory to a single level. Both VMS [26] and variants of Unix (such 
as SunOS) provide the ability to share memory segments between process address spaces, and 
a separate ability to map from disk storage into a process address space. Several other systems 
[7, 8] provide the notion of a memory object, which provides an abstraction of data.  In these 
systems, memory objects can be mapped into a process address space, however memory 
objects and processes are separate abstractions. It is therefore impossible to directly address a 
memory object, or to compose a memory object from other memory objects.  

By contrast, the single abstraction over data provided by Grasshopper may be arbitrarily 
recursively composed.  Since any container can have another mapped onto it, it is possible to 
construct a hierarchy of container mappings as shown in Figure 1.  The hierarchy of container 
mappings form a directed acyclic graph maintained by the kernel.  The restriction that 
mappings cannot contain circular dependencies is imposed to ensure that one container is 
always ultimately responsible for the data.  In Figure 1, container C2 is mapped into container 
C1 at location a1. In turn, C2 has regions of containers C3 and C4 mapped into it.  The data 
from C3 is visible in C1 at address a3, which is equal to a1 + a2.  
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Figure 1: A container mapping hierarchy 

Loci perceive the address space of their host container.  Therefore all loci executing within a 
container share the same address space.  However, a locus may require private data, which is 
visible to it, yet invisible to other loci that inhabit the same container.  To satisfy this need, 
Grasshopper provides a viewing mechanism known as locus private mapping.  

Locus private mappings are similar to container mappings in that they make data from one 
container appear in another. However, instead of being globally visible, locus private 
mappings are only visible to the locus in which they are created and take precedence over 
host container mappings. This facility allows, for example, each locus to have its own stack 
space with the stacks of all loci occupying the same address range within their host containers 
as shown in Figure 2. The effect of locus private mappings remain visible at all times until 
they are removed.  

 

Figure 2: Loci with private stack space 
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Consequently if locus 1 in Figure 2 were to invoke some other container C4 and map in 
container C1 it would see the data from C2 from the mapping instantiated whilst running in 
container C1. This is shown in Figure 3 below. This technique both simplifies multi-threaded 
programming and provides a useful security mechanism that is unavailable using 
conventional addressing mechanisms.  

 

 

Figure 3: Multi level mappings 

6. Managers 

Thus far we have described how all data storage in Grasshopper is provided by containers. 
However, we have not described how containers are populated with data.  When data in a 
container is first accessed, the kernel is required to provide the concrete data that the 
container represents.  A locus executing within a container accesses the data stored in it using 
container addresses.  The container address of a word of data is its offset relative to the start 
of the container in which it is accessed.  Managers are responsible for providing the required 
data to the kernel and are also responsible for maintaining the data when it is not RAM 
resident.  Rather than being part of the kernel, managers are ordinary programs which reside 
and execute within their own containers; their state is therefore resilient.  The concept of a 
manager is similar to the Mach external pager [36, 50] which has been successfully used to 
implement a coherent distributed persistent address space [21].  In common with Mach and 
more recent systems [13, 20], managers are responsible for:  

• provision of the pages of data stored in the container, 
• responding to access faults, and 
• receiving data removed from physical memory by the kernel. 

In addition, Grasshopper managers have the following responsibilities: 

• implementation of a stability algorithm for the container [5, 24 , 29 , 39, 47], 
i.e. they maintain the integrity and resilience of data, and 

• maintenance of coherence in the case of distributed access to the container [15, 
27, 35]. 

A manager is invoked whenever the kernel detects a memory access fault to data stored in the 
container it manages.  Making data accessible in a container takes place in two steps:  



9 

i. the manager associated with a particular address range must be identified, and, 
ii. the appropriate manager is requested to supply the data. 

The kernel is responsible for identifying which manager should be requested to supply data. 
This is achieved by traversing the container mapping hierarchy.  Once the correct manager 
has been identified, the kernel requests this manager to supply the data.  The manager must 
deliver the requested data to the kernel, which then arranges the hardware translation tables in 
such a way that the data is visible at an appropriate address in the container.  

In Grasshopper, the manager is the only mechanism by which data migrates from stable to 
volatile storage.  This is in contrast to conventional operating systems in which the usual 
abstraction of stable storage is the file system.  Grasshopper has no file system in the 
conventional sense.  

Managers are responsible for maintaining a resilient copy of the data in a container on stable 
media.  It is only within a manager that the distinction between persistent and ephemeral data 
is apparent.  Managers can provide resilient persistent storage using whatever mechanism is 
appropriate to the type of data contained in the managed container. Since managers are 
responsible for the storage of data on both stable media and in RAM they are free to store that 
data in any way they see fit. An important class of managers are those that store data on stable 
media in some form other than that viewed by a locus in a container; we term these 
manipulative managers. Some examples of manipulative managers are: 

i. swizzling managers, 
ii. encrypting managers, and, 
iii. compressing managers. 

Swizzling managers are particularly interesting in that they permit the use of containers that 
are larger than the address space supported by the host hardware. A locus executing within a 
large container will generate addresses constrained by the machine architecture. Access faults 
will be delivered by the kernel to the manager associated with a container. A swizzling 
manager will provide a page of data in which addresses that refer to objects anywhere within 
the container are replaced with shorter addresses (ones within the machine’s address range) 
which, when dereferenced will be used by the swizzling manager to provide the correct data 
[4, 45, 48]. 

It is possible for a locus to execute in a container whose manager provides a one-to-one 
mapping between data in virtual memory and data on disk.  This is the abstraction delivered 
by demand paged virtual memory and memory mapped files in conventional operating 
systems.  Most managers will not operate in this manner since this does not adequately 
support orthogonal persistence.  

7. Capabilities 

Capabilities provide an access control mechanism over containers and loci.  For containers, 
access control is required over: 

• container maps, 
• the containers which may be invoked, 
• the ability to set an invocation point, 
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• the containers which may be mapped and the access type available to mapped 
regions (read/write), and 

• deletion of containers, 
and for loci access control is required over: 

• creation of locus private mappings, 
• blocking and unblocking loci, 
• management of exceptions and 
• deletion of loci. 

In conventional operating systems these access controls are usually provided by the file 
system interface.  This is clearly inappropriate for Grasshopper.  In several existing persistent 
systems protection is provided via the programming language type system [31] or through 
data encapsulation [28].  Grasshopper is intended to support multiple languages and therefore 
cannot rely solely on a type system. 

The protection abstraction provided by Grasshopper is the capability [11].  Capabilities were 
first proposed by Dennis and Van Horn [10] and have been used in a variety of contexts as an 
access control mechanism [16, 38, 44, 49]. A capability consists of a unique name for an 
entity, a set of access rights related to that entity, and rights pertaining to the capability itself, 
in particular whether the capability can be copied.  An operation can only be performed if a 
valid capability for that operation is presented.  There are two important points about 
capabilities from which they derive their power: the name of the entity is unique and 
capabilities cannot be forged or arbitrarily modified.  Capabilities can only be created and 
modified by the system in a controlled manner. 

There are well-known techniques for achieving the above requirements.  Unique names may 
be generated by using a structured naming technique where each machine is given a unique 
name and each entity created on that machine has a unique name.  Such a technique is 
described in [15].  Protection of capabilities can be achieved in one of three ways: 

tagging: in which extra bits are used by the hardware to indicate memory 
regions representing capabilities and to restrict access to these regions, 

segregation: in which capabilities are stored in a protected area of memory, 
passwords: in which a key embedded in a sparse address space is stored with the 

entity and a matching key must be presented to gain access to that 
entity. 

The merits of each of these techniques have been well discussed in the literature [1, 12, 18, 
44].  Given that Grasshopper is to be implemented on conventional hardware, tagging is not 
an option.  Segregation is used in Grasshopper since it avoids the problems associated with 
knowing when to garbage collect unreferenced entities.  This occurs with password 
capabilities since a user may keep a copy of the capability somewhere outside of the kernel’s 
control.  Since the kernel cannot know how many (if any) of these externally recorded 
capabilities may be in existence it cannot perform garbage collection except on entities it is 
specifically told to destroy. Using segregated capabilities allows garbage collection to be 
performed in association with explicit destruction of entities by a locus. When the reference 
count on a capability falls to zero, i.e., there are no more extant references to the 
corresponding entity, the entity may be deleted. 
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One of the criticisms of capabilities as a protection technique is that they are expensive to 
implement without hardware support.  This would be of some concern if capabilities were to 
be used to control access to all objects (e.g. records and integers).  This is not the case in 
Grasshopper; capabilities are only used to control operations on containers and loci, i.e. 
coarse grain objects.  In fact we expect that protection system in Grasshopper to be 
considerably more efficient than the equivalent in a conventional system, i.e. the file and 
directory system. 

In Grasshopper, every container and locus can have an associated list of capabilities.  A 
capability list is constructed out of tuples containing a unique fixed length key and a 
capability.  Operations are provided for copying capabilities and for adding and removing 
them to and from lists.  At any time, a locus has access to: 

i. all the capabilities in its own list, 
ii. all capabilities in its host container's list, 

Programs can refer to capabilities by specifying a capability list (locus or host container) and 
a key.  Grasshopper checks that an entry with the given key exists in the specified list.  An 
appropriate capability must be presented for most operations involving the manipulation of 
entities, such as invocation and mapping. 

A number advantages arise from the use of capabilities for access and protection: 

i. Distribution is completely transparent:  A locus wishing to invoke a container 
simply presents the capability.  The capability uniquely identifies the container 
and its physical location is irrelevant. 

ii. The system does not force any particular protection structure upon users.  It is 
possible to construct hierarchical protection or more general policies using 
arbitrary naming mechanisms which map some representation of a name onto a 
key and thereby onto a capability. 

iii. It is possible to create restricted views of objects.  For example, two different 
capabilities for a container could be created, one of which allows the container 
to be mapped, while the other only allows it to be invoked. 

iv. It is possible to revoke access.  A holder of a capability with appropriate access 
rights can invalidate other capabilities for the same entity. 

8. Persistence 

Containers and their associated managers provide the abstraction of persistent data. Managers 
are responsible for maintaining a consistent and recoverable stable copy of the data 
represented by the container. As part of its interface, each manager must provide a stabilise 
operation [5, 39].  Stabilisation involves creating a consistent copy of the data on a stable 
medium.  

Managers alone are not able to maintain a system-wide consistent state. For example, 
consider the case where two containers, A and B, both provide data which is used and 
modified by a single program. The manager for container A stabilises the state of A, and 
execution of the main program continues. At a later time, container B is stabilised. This does 
not result in a consistent view of data from the point of view of the executing program, since 
after a system crash the recovered state of the two containers are inconsistent relative to one 
another.  
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The simplest approach to global consistency is to enforce system wide simultaneous 
stabilisation in which the kernel blocks all executing loci and requests each manager to 
stabilise. The disadvantage of this approach is that the entire system freezes whilst the 
stabilise occurs.  

An alternative approach is to stabilise parts of the store separately. In such a system it is 
necessary to determine which containers and loci are causally dependent upon each other's 
state and only force these to stabilise together, leaving the rest of the system to run. Such 
inter-dependent units are termed associates [46].  The kernel may determine which containers 
and loci are inter-dependent by annotating the container mapping graph with a history of 
invocations and dependencies on kernel data.  The internal state of kernel data structures also 
forms part of the state of a user program.  For example, the granting of capabilities to loci 
must be recorded. The causal dependencies must therefore be extended to include kernel data. 
Thus a complete, consistent and recoverable representation of a subsection of the system can 
be produced.  

When a consistent subset of the system has been determined, the kernel proceeds with a two 
phase commit protocol, requesting the appropriate container managers to stabilise the data in 
their charge. When all user data is stable, the kernel will proceed to stabilise its own state, and 
finally, as an atomic action, will commit a descriptor block that describes the new state to 
stable medium.   

In this way, the kernel is part of the persistent environment, thereby extending the concept of 
an operating system instance. A Grasshopper kernel persists even when the host machine is 
not operating. Conventional operating systems rebuild the operating system from scratch each 
time they are bootstrapped. In Grasshopper, the entire kernel, operating system and user state 
persists. After an initial bootstrap, an entire self-consistent state is loaded and continues 
execution.  

9. Providing A Persistent Environment 

A key concept behind orthogonal persistence is that the programmer is not required to 
manage the movement of data between primary and secondary storage. Instead, application 
programs execute within a stable, resilient addressing environment in which data locality is 
invisible. A number of persistent systems have been constructed which support particular 
programming languages on a variety of architectures. 

In the first systems to be called persistent [3] all data was stored in objects. Prior to every 
object dereference, a run time check was performed to ensure that the object was resident in 
memory. If not, the object was loaded from persistent storage by the Persistent Object 
Management System (POMS) [4]. This technique requires considerable complexity to ensure 
that objects are not loaded more than once and that objects are copied back to persistent 
storage atomically.  

Recently a large number of object-oriented database implementations have appeared both 
commercially and as research vehicles [23, 37]. A large number of these have been based on 
the language C++ and rely upon the implementor changing the C++ run time system in some 
manner to load and store persistent data. One popular technique used by these systems is to 
overload the deference operator “∅” to perform residency checking [6]. Like the PS-algol 
systems, if the object is not resident in virtual memory it is first loaded from the persistent 
store and the dereference is allowed to proceed. Another technique used by Moss [33] to 
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implement persistent Smalltallk-80 uses dummy methods to load non resident objects in a 
similar manner. 

Rather than implement persistence with explicit object management, the persistent address 
space may be embedded within the virtual address space. Using this technique, pages of 
persistent data may be incrementally loaded from a page based object store using 
conventional page faulting techniques. Dirty pages must be written to a different site to 
guarantee that at least one self consistent copy of the store exists at any time. Systems using 
this technique have been implemented above VMS [30], Mach [47] and Unix systems [48].  

All the above techniques require considerable implementation effort by the provider of the 
persistence mechanism who often expends significant effort working around the inappropriate 
mechanisms provided by conventional operating systems. These work arounds inherently 
compromise the efficiency of these implementations. Secondly, the techniques are tied to a 
particular language system; for example, the techniques used to implement PS-algol are not 
necessarily appropriate for Smalltalk or C++.  

By contrast, the abstractions described in this paper provide an ideal platform for the 
construction of persistent systems. In the remainder of this section we will demonstrate how 
different user level systems may be constructed using the abstractions provided by the 
Grasshopper kernel.  

In Grasshopper even the most primitive language, for example C, may be provided with a 
resilient, persistent execution environment without modification to the compiler or run time 
system. This may be achieved in a variety of ways with varying amounts of sophistication. 
However, the simplest is to execute each program in a Grasshopper container with its own 
manager as shown in Figure 4 below. 

 

Figure 4: Running a C program under Grasshopper. 

In this scheme, a C program is organised in memory in the same manner as under Unix, with 
code followed by static data, heap and stack space. The managers provide both the 
functionality of conventional demand paged virtual memory plus resilience. The manager 
may save the entire state of the running process on disk and restart it at any arbitrary point in 
its execution in a manner that is totally transparent to the running process. Libraries may be 



14 

provided by mapping library code from other containers into the address space of the process. 
Libraries provide both the usual Unix style libraries and code for communicating with other 
processes and for binding to persistent data. The last of these is crucial since to be useful, a 
process will require to bind to global data. 

In Unix, binding to persistent data is achieved through the use of a file system. Symbolic 
names (file names) are dynamically mapped to sequences of bytes (files). All access to 
persistent data is via a set of predefined system calls (open, creat, write etc.). In Grasshopper, 
persistent data external to a process is accessed via binding servers.  

Binding servers are implemented as containers whose invocation interface present functions 
that provide access to external persistent data. Access may be provided either through further 
invocation, via container mapping or both as appropriate. For example, consider a locus 
wanting access to a database service. The locus must first call a binding server with the name 
of the database and capabilities as a parameters. Assuming that the locus has appropriate 
capabilities, the server will install the capability for the database in the locus. The locus now 
has the capability to directly call the database without further assistance by the binding 
server. Whenever access is required to the database, its container is invoked with an 
appropriate request. Access to the database will be effected by the database code which may 
map data from appropriate parts of the database into the address space of the requesting locus. 

The above scenario assumes that the locus requiring database access does not already hold a 
capability for the database. Such an assumption is the norm in a system such as Unix in which 
processes are typically created with no knowledge of the environment in which they operate. 
In Grasshopper loci may be populated with capabilities at any time in their lifetime. In 
particular, a locus may be populated with all the capabilities it requires at the time it is 
created. This facility has two major benefits. Firstly it is more efficient, since loci do not have 
to perform dynamic name binding in order to acquire resources. Secondly it is more secure; a 
locus may be loaded with exactly the resources it requires to perform some task. If that locus 
is denied access to a binding server, it cannot access any system components for which it does 
not already hold a capability.  

As an example of how Grasshopper may be used at the user level consider a user logging into 
a Grasshopper system. In Grasshopper, user environments are embodied in a distinguished 
container and a collection of loci and other containers which are persistent. When a user logs 
out, their environment continues to exist. Therefore, rather than create a new environment on 
each login, login consists of binding to the extant environment. This task is performed by a 
login server which maintains a mapping between (user name, password) pairs and capabilities 
for the distinguished containers. Such a scheme is described in [19]. 

A user wishing to reconnect with their environment, provides the authentication server with a 
user name and a password. This request must be accompanied by a capability for the devices 
on which the user wishes to interact. These may be provided by the locus that mediates the 
connection with the grasshopper system (c.f. getty in Unix). Once the authentication process 
is complete, the server invokes the user's distinguished container with a locus carrying with it 
the capabilities for the devices. Using these capabilities, the locus may re-establish 
conversation with the user in whatever manner is appropriate. 
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10. Conclusions 

In this paper the initial design of The Grasshopper Persistent Operating System has been 
described.  Grasshopper satisfies the four principle requirements of orthogonal persistence 
namely: 

i. support for persistent objects as the basic abstraction,  
ii. the reliable and transparent transition of data between long and short term 

memory, 
iii. persistent processes and 
iv. control over access to objects. 

This is achieved through the provision of three powerful and orthogonal abstractions namely 
containers, loci and capabilities. Containers provide the only abstraction over storage, loci 
are the agents of change, and capabilities are the means of access and protection in the 
system.  These abstractions are supported by a fourth mechanism, the manager, which is 
responsible for data held in a container. 

Based on our experience of constructing persistent systems, we believe that these abstractions 
provide an ideal base for persistent programming languages.  At the moment we cannot prove 
this assertion since the Grasshopper system is still under construction on a DEC Alpha 
platform. 
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