
Published in Proceedings, 18th Australian Computer Science Conference , Adelaide, Australia, pp 227-236,
1995. 1

Reducing the Extent of Cascadable Operations in
Stable Distributed Persistent Stores

 Rasool Jalili and Frans A. Henskens

 Basser Department of Computer Science
 The University of Sydney

 N.S.W. 2006
 Australia

 {rasool,frans}@cs.su.oz.au

Abstract

The act of accessing data objects in a persistent
store may result in the creation of state
dependencies between the accessing processes and
data objects. It is important for the logical integrity
of the store that checkpoint or roll-back of all
dependent entities (processes or objects) occurs as
an atomic action. Reducing the number of
dependent entities in the system leads to shortening
of the period of suspension of processes during
checkpoint and roll-back operations and thus
improvement in system efficiency. In this paper we
investigate a new approach to the representation of
dependencies based on differentiating between
dependencies created as a result of read accesses
and of write accesses. Using directed graphs to
maintain information about dependencies and
separately defining the meaning of graph edges for
checkpoint and roll-back operations, we show that it
is possible to significantly reduce the cascade effects
of these operations.

1 Introduction
Persistent systems provide mechanisms for the
uniform management of data regardless of its
lifetime [1]. Provision of such uniformity, using
conventional two-level store computer architectures,
requires the abstraction of a very large store which
involves all data in the system and appears as a
failure-free store. Such store is referred to as a
persistent store and the property of providing the
illusion of being failure-free is often called store
stability [2].

A Distributed Persistent Store (DPS) is a
network-wide persistent store which supports
concurrent access of users for a distributed system
[6]. Casper [12] and the Monads-DSM [5] are
examples of DPSs. Both support the existence of
persistent objects in a paged virtual storage space.
Nodes provide access to the persistent store by
maintaining a cache of virtual pages from the store
in their local volatile memory. These virtual pages
are provided to client nodes by a central page server

(Casper) or by a group of page servers (the Monads-
DSM). Pages are transmitted between client and
server nodes as required by user processes, the page
coherence protocols and the store stability protocols.

When a computer system fails, the contents of its
volatile memory are typically lost, while the
contents of its non-volatile memory (disk or tape)
remain unchanged. As persistent stores provide
uniform management of data, the transfer of such
data between volatile and non-volatile memory is
transparent to the user. At any instant in time the
true state of a persistent store is represented by the
combination of the contents of the volatile and non-
volatile memories. Since the contents of volatile
memory are typically lost after system failure, a
stable persistent store must be able to revert to some
consistent state described in non-volatile memory.

Techniques proposed to achieve this ([7, 10]) are
typically based on flushing the volatile system state
to non-volatile storage (checkpointing) and using
this state on occurrence of a failure (or in response
to the request of the user or higher level
applications) to revert to the most recent checkpoint
(rolling back). This requires the existence of at least
one global consistent state at each point in time.
Accordingly, checkpoint operations must be
achieved as an atomic action in order to guarantee
the existence of such a state even if some failure
occurs during the checkpoint operations themselves.
It is desirable that such a consistent state is close to
the state at the time of failure, thus minimising the
loss of modifications to the store. However,
frequent recording of a global state is not normally
acceptable due to the cost of such operations.

Checkpointing the whole system state in an
atomic action may necessitate cessation or
restriction of the system normal operations during
the checkpoint. This is not so efficient for the
system throughput, especially in the case of DPSs.
To overcome this problem, mechanisms [7] have
been proposed to checkpoint parts of the store
independently; the global state of the system is the
collection of these stable parts. Checkpointing parts

 2

of the store independently however, creates the
possibility of logical inconsistencies between data.
Therefore, inter-relationships (dependencies)
between such parts must be taken into account to
ensure consistency.

As processes access data objects, they may
become dependent on each other, due to the possible
effect of the data on the way that the processes
modify data in some other objects. It is important
for the logical integrity of the store that
checkpointing of all dependent entities occurs as an
atomic action. Dependencies are detected and
recorded in Casper using sets called associations
[12].

The problem with large sets of dependent entities
(especially in a distributed environment) is the
degradation in system performance caused by the
propagation of checkpoint and roll-back operations
called the cascade effect. This cascade effect can be
reduced by controlling the number of the
independently checkpointed entities and the
frequency of checkpoint operations. As we will
show the extent of cascadable operation is reduced
through the use of a new technique for describing
dependencies.

In this paper, we investigate the use of directed
graphs as a method of maintaining dependencies
among entities in a DPS. We show that the use of
directed graphs allows us to separately describe
checkpoint and roll-back dependencies, thus
improving store efficiency.

2 Entity dependency in distributed
environments
Constructing a system-wide consistent state in
distributed systems is not as straightforward as for
single-node systems. Even if each node has its own
individual consistent stable state, a collection of
individual stable states cannot be considered as a
global consistent state. This is because of the
dependencies among entities belonging to different
nodes and that such dependencies may traverse
nodes.

Process communication in computer systems
may lead to inter-entity dependencies. Processes in
distributed systems may communicate through
passing messages or accessing a (virtual) shared
memory. The criterion for dependency is not
similar for these methods of communication.

2.1 Dependency criteria in message
passing systems
In message passing systems a process communicates
with another process or invokes an object by
sending and receiving messages. Such message
passing results in the dependency of the receiver to
the sender of a message. The sender may also have

received messages from other processes, resulting in
a cross-dependency of entities. Knowledge of the
order (time) in which messages are sent and
received is important in such systems. However, no
system-wide physical clock exists in distributed
systems. Lamport [9] proposed achievement of
such ordering using the concept of logical time.
Logical time describes the happened-before relation
between local events in a process as well as the
inter-process events such as sending and receiving
messages. Having such a unique time and
appending messages with the time, it is possible to
specify criteria for dependency and global consistent
state. According to [11] ,
1) Message Mi depends on message Mj if and only

if Mi is produced in a site after receipt of Mj or
after receipt of Mk which depends on Mj .

2) Message M is called an ’orphan message’ if its
receiver records the receipt in its stable state,
but its sender reverts to a state which existed
before its sending of the message. Message M
is called a ‘missing message’ if its sender
records its sending, but its receiver reverts to a
state which existed before its receipt of the
message. A global state which does not include
any orphan or missing message is called a
global consistent state.

The problem with message passing systems is that
each message transmission is regarded as a source
of dependency between the sender and receiver of
the message. This is while some messages may
include special system management information or
read-only data which in fact result in no real
dependency.

2.2 Dependency criteria in shared
memory systems
Processes in Distributed Shared Memories (DSMs)
communicate through accessing the same data
objects. This sort of communication results in
dependency of the processes and the object if the
object has been modified since the last checkpoint
operation. Similarly to sending and receiving
messages in message-based systems, writing to and
reading from an object are considered the two major
events in DSMs. Writing on an object may be
considered equivalent to sending a message to the
object and reading from an object equivalent to
receiving a message in terms of message passing
systems [4] .

In contrast to message passing systems in which
each message transmission results in a dependency,
in DSMs,
• access to data (only transmission of messages

including data in terms of message passing
systems) is considered as the criterion of
dependency, and

 3

• operation behaviour can be taken into account to
prevent false dependencies to be considered. For
example, accessing an unmodified data results in
no dependency; this may be detected using
coherency mechanisms provided for the DSMs.

In summary, using DSM reduces inter-entity
dependencies in comparison with message passing
systems [8] .

3 Implications of dependencies in
distributed persistent stores
Casper and the Monads-DSM are examples of DPS
implementations which attempt to provide stability
of their store through checkpointing individual parts
of their store. They track and maintain
dependencies for their defined granularity of
stabilisation.

Casper employs the central server model of
distributed memory management to provide the
abstraction of a DPS. It considers the world as a set
of clients served by a central server which provides
access to shared objects and maintains the stability
and coherency of the paged persistent store.
Checkpoint operations occur at the client level and
may be cascaded to other clients. Clients which
have seen the same modified data since the last
stable state, are deemed to be dependent on each
other and are grouped into dynamic sets called
Associations [12]. Each Association is accompanied
by a list of persistent pages which contain the
modified data which was accessed in common.
Whenever a client obtains a copy of a modified
page, Associations may change according to the
following rules:
• The Association to which the client belongs is

merged with the Associations of other clients
dependent on the page, and

• The page is inserted into the list of persistent
pages modified by members of the merged
Association.

When any client belonging to an Association
initiates a checkpoint operation, all clients in the
Association are forced to checkpoint. Similarly, if
any client in an Association rolls back to its last
stable state, all clients in the Association must roll
back. This results in consistency of the persistent
store.

The granularity of checkpoint in Monads is a
volume (logical disk partition) [10] . In a multi-
volume single Monads node, or a network of
Monads computers, it is possible to have cross
references between volumes. Volumes are used to
store both processes (process stacks) and objects
and therefore, dependencies may develop between
them. Monads-DSM represents such dependencies
using dependency graphs of volumes. In order to
ensure consistency, volumes containing cross

references are checkpointed together and a
dependency graph is maintained at each node to
describe relationships between volumes. To ensure
atomicity of checkpoint operations, a two-phase
commit protocol is also proposed, in which a
volume and all its dependent volumes are
checkpointed together [7]

A problem with the original Monads-DSM
approach is the granularity of stability. Using
volumes as the granularity of stability leads to the
incidence of checkpoint operations on unwilling
data objects in a volume together with some other
objects which must be checkpointed for consistency
reasons. In single volume nodes, a checkpoint on
that volume effectively results in a suspension of
operation for that node.

4 Implications of dependency on
performance and useability
Existence of a system-wide consistent stable state at
recovery from a failure is ensured if checkpoint of
an entity is propagated to all its dependent entities.
This can be provided through the achievement of the
following operations as an atomic action:
• the checkpoint of the entity, and
• the checkpoint of all other dependent entities to

which the checkpoint is propagated.
A similar sequence should also be followed in the
case of roll-back of an entity following a failure.
The problem with such a sequence is the partial
cessation of processing during the checkpoint or
roll-back operation. Suspension of operation of a
part of the system results not only in unuseability of
the suspended part, but also inability of other (non-
suspended) parts to communicate with the
suspended part. This is more crucial in distributed
systems as entities reside on different nodes may
depend on each other and thus completion of a
checkpoint may require transmission of some
messages and wait for reply from remote nodes.
Therefore, reducing the effect of dependent parts of
the store is required to improve the system
performance

Reducing the effect of dependent data on system
performance requires that
1) Propagation of checkpoint and roll-back

operations to unrequired parts of the store is
prevented. Selection of entities as the granularity
of checkpoint operations reduces such
propagation.

2) The extent (number) of dependent parts of the
store is reduced. To provide this, we need to
rethink our basis for dependencies. By
exploiting the behaviour of operations between
processes and objects in terms of dependency,
we will define a new model of propagation of
checkpoint and roll-back operations.

 4

5 A new representation of dependencies
Considering processes as the agents of change on
data and objects as the repository of data in a
persistent store, inter-entity dependencies are
created as a result of the invocation of objects by
processes. Neither processes nor objects can
directly depend on each other, but they may depend
on each other through an entity of the other kind.

We assume entities as the granularity of
checkpoint (and roll-back) operations. Checkpoints
are initiated for entities to advance their stable state.
During a checkpoint operation for an object, all
modified pages since the last checkpoint are written
back to disk, becoming clean. We refer to such
object as an unmodified object (unmodified since its
most recent checkpoint) and to an object with some
modified data since its most recent checkpoint as a
modified object.

Previous work on stability in persistent systems
[7, 13] considered that dependency is always a
bidirectional relationship, i.e. when two entities are
dependent, the checkpoint or roll-back of each of
them is propagated to the other entity. In the new
representation of dependencies, we distinguish
between dependencies created as a result of
different operations. Accordingly we propose that
dependency is in fact a unidirectional relationship
between two entities of different kind (processes
and objects). By considering read and write as the
main operations on objects, the following categories
of operations may be considered in terms of
dependency.
1) A process may read from an unmodified object.

This results in no dependency between the
reading process and the object as the current state
of the object is stable.

2) A process may read from a modified object.
This results in a unidirectional dependency
between the reading process and the object, due
to the unstability of the read data at the time of
the read operation. The direction of the
dependency (i.e. which side depends on the
other side) is a matter which is specified when a
cascadable operation (checkpoint or roll-back) is
being propagated. Consider a process P which
has read from a modified object O. Before P
checkpoints its state, it must ensure that the read
data is stable; O is not required to ensure about
the stability of P when it is being checkpointed.
As a result, the direction of dependency in the
case of checkpoint is from P to O. A roll-back
of O would result in an inconsistency with P and
thus necessitates a roll-back of P. However, a
roll-back of P does not affect O. Thus, the
direction of dependency in the case of roll-back
is from O to P (O depends on P).

3) A process may modify an object. This results in
the dependency of both entities on each other
and is represented by a pair of unidirectional
dependencies between them. This pair of
dependencies is necessary to prevent the
occurrence of missed object modification or
orphan object modification through propagation
of checkpoint (roll-back) of each side to the
other side. A missed object modification occurs
when an object is modified and subsequently
rolled back to the state prior of the modification.
An orphan object modification occurs when an
object is modified and subsequently the
modifying process rolls back to the state prior to
the modification.

Methods of representing dependencies in persistent
systems which assume all dependencies are
bidirectional are unable to represent directional
dependencies. Directed graphs can be used to fulfil
the requirements of the new representation. We
refer to a directed graph which represents such
dependencies as a Directed Dependency Graph
(DDG). DDGs are also used to separately represent
the checkpoint and roll-back dependencies between
entities. This is described later in this paper.

One DDG is associated per entity, but different
spanning-trees may be traversed depending on the
kind of the operation (checkpoint or roll-back),
initiated for the entity. As read operations in a
computer system typically outnumber write
operations [3], we believe that the cost of cascadable
operations will decrease dramatically by use of the
proposed directed graphs. This is because read
operations on modified data now create a
unidirectional dependency. The simulation results
presented in section 7 confirm this claim.

5.1 Notation
We use → edge in order to specify the dependency
relationship between two entities. E1 → E2 means
that E1 depends on E2. → is transitive, but not
symmetric i.e.

if (E1 → E2) and (E2 → E3),
 then it is implied that (E1 → E3)
but, E1 → E2 does not imply that E2 → E1.

However, the right hand side of a → relation may
depend on the left hand side
• through transitivity; the existence of a cycle in

the directed dependency graph (e.g. for
E1 → E2, we may also have E2 → E3 and
E3 → E1 which implies that E2 → E1), or when

• a process has modified an object, which results
in two unidirectional edges with different
directions between the two entities.

In the case of a write operation which leads to a pair
of dependencies, instead of indicating two
unidirectional edges (E1 → E2 and E2 → E1), we use
the notation E1 ↔ E2.

 5

The construction and maintenance of DDGs are
integrated into the management of the persistent
store which typically utilises the operating system
kernel services such as the virtual memory
management.

5.2 Construction of directed dependency
graphs
We assume that dependencies are recorded as soon
as they occur. Update of DDGs is synchronously
achieved with the operations cause the
dependencies. A DDG grows or shrinks according
to the following criteria.
• When a process reads an unmodified object,

nothing is added to any DDG.
• When a process P1 reads a modified object O1,

the edge P1 → O1 is inserted into the DDG
including P1 or O1, if at least one of the DDGs
containing P1 or O1 includes only one entity;
otherwise the edge joins the two DDGs.

• When a process P1 modifies an object O1, the
edge P1 ↔ O1 is inserted into the DDG including
P1 or O1, if at least one of the DDGs containing
P1 or O1 includes only one entity; otherwise the
edge joins the two DDGs.

• When a process belonging to a DDG reads an
object or modifies an object which belongs to
another DDG, the two DDGs are merged using
one of the above edges to create a single larger
graph.

• A graph shrinks when a set of dependent entities
is checkpointed or reverts to their last stable
state. Once a checkpoint or roll-back operation
is initiated for an entity E, for each entity which
is reachable from E in the DDG corresponding to
the operation, the operation is applied on the
entity. Then all edges attached to the entity are
removed. Such removal of all edges is possible
due to the stability of the entity1.

• DDGs are not persistent. When a node crashes,
all graphs stored on that node are lost.

• DDGs do not store any information about the
order of occurrence of dependencies. Operations
on an object may happen in different times, the
issue which is unimportant during a time slice
regarding dependency. Nevertheless, before the
allocation of a new time slice to a process, it
should be ensured that all dependencies till this
stage have been recorded.

At any given time each entity belongs to one and
only one dependency graph. To find the entities
dependent on an entity, it is sufficient to find the
location of the entity in its graph (subject to the kind
of operation) and then traverse the directed graph
starting from the entity. This may be different for

1At this stage we assume that checkpoints are achieved atomically.

each entity in the graph and thus may result in a
different set of dependent entities.

5.3 Description of dependencies in a
multi-node environment using DDGs
So far we have implicitly assumed that entities
belong to a single-node computing environment. It
is crucial that the described model be able to
describe dependencies between entities in a
distributed environment where an entity in a node
may depend on a remote entity. The described
scheme is fully applicable to a distributed
environment with the abstraction of shared virtual
memory. It may also be applicable for message
passing systems if page accesses are properly
replaced by message transmission assuming that
messages contain enough information regarding
their operation behaviour.

Two major issues regarding the application of
described DDGs for distributed virtual stores are the
maintenance of distributed DDGs and the
representation of edges which link entities residing
on deferent nodes. A centralised or distributed
approach may be applied to manage distributed
DDGs regardless of the model of page serving.
However, to gracefully integrate stability
management with memory management, distributed
graphs might be more harmonised with the model of
page serving used in distributed virtual stores.
Accordingly the following approaches can be taken:
1) Use of a central server for dependencies: In

DPSs such as Casper which rely on a central
page server, all objects are accessed through a
central server. Such a server can also manage
distributed dependency graphs. This method of
maintaining graphs is simple, but it has the
potential drawback of the server bottleneck.

2) Use of a distributed server for dependencies:
Regardless of the page serving strategy this
group of approaches relies on a distributed graph
which is maintained by all processing sites. This
does not force any relationship between page
serving nodes and dependency maintaining
nodes. For example, diskless nodes in a
distributed system do not serve any data object,
while they may host processes which access
remote objects and thus insert some edges in the
distributed dependency graph. Distribution of
DDGs may be achieved either through
replication of DDGs or decomposing DDGs into
sub-graphs, as described below.

• Replication: A distributed DDG is replicated on
all nodes which own at least one entity in the
graph, even disk-less nodes. This overcomes the
drawback of the server bottleneck in the central-
server approach, but it requires the maintenance
of consistency between graph replicas. In this
approach, a node must be aware of all

 6

dependencies happening on all nodes with
common DDGs with the node; most of the
dependencies may be locally unimportant.
Moreover, any change in a DDG must be
atomically multicast to all nodes residing a
replica.

• Sub-graphs: A distributed DDG is decomposed
into some sub-graphs, each maintained by a
different node. Each sub-graph may include all
local dependencies in a node as well as direct
dependencies2 of its entities on remote entities.
As the majority of accesses in a node are
typically local, each sub-graph is populated with
local entities, but some edges connecting a local
entity to a remote entity may also exist.

 This approach balances the load of maintaining
dependency graphs gracefully over nodes, but
finding all dependent entities on an entity may
require traversing the graph over nodes which
necessitates transmission of messages. The
approach is appropriate for distributed persistent
systems which are constructed using a true
distributed shared memory. In comparison to the
alternative approaches the cost of the approach is
reasonable, but cross references of entities on
different nodes is a problem. However, node
crashes result in the lost of their sub-graph and
thus roll-back of dependent entities.

Representation of edges which link two remote
entities is similar to that of edges which link local
entities in both centralised maintenance of DDGs
and replication of DDGs. In the case of distributed
maintenance of DDGs using sub-graphs, however,
this is not so straightforward as an edge should link
two entities which reside on different sub-graphs on
different nodes. When a process P attempts to
access a modified page of a remote object R, a page
fault is raised locally. In handling the fault, the
local kernel realises that the fault is for a remote
page and therefore sends a message to its owner
node, requesting to supply the page. To ensure that
the local kernel and the kernel in the owner node are
aware of possible dependency as a result of the
access, a solution is to duplicate such edge and let
both kernels to insert the edge into their sub-graphs.
Inserting the edge in both kernels require the
existence of a vertex representing the remote entity.

We propose pseudo entities to provide the local
representation of remote entities. A pseudo entity is
the ghost of a remote entity and contributes in local
sub-graphs of a DDG behalf of the remote entity.
To distinguish entities which correspond to remote
pseudo entities, we refer to them as real entities and
to other entities as non-pseudo entities. Pseudo
entities are identified with the identity of their

2An entity directly depends on another entity, if the path connecting them

has only one edge.

corresponding real entities. Pseudo entities act
similar to real entities regarding the propagation of
cascadable operations except that a message should
also be sent to the node owning their corresponding
real entities to propagate an operation. We assume
that each entity’s identifier encloses its host node
identifier.

Each link connecting two entities residing on
different nodes in fact is represented by two edges,
each links a pseudo entity to a real entity in the same
way as for local entities. To cope with this
arrangement, the local kernel in the scenario of
accessing a modified page of a remote object
mentioned above, has the knowledge of the local
process (P) and the remote object (R) containing the
requested page, the remote kernel also must have the
knowledge of both R and P (as a remote process).
Therefore, as a part of its requesting message, the
local kernel must enclose the identifier of P.

Consider the distributed DDG shown in figure 1
in which process P12 reads a modified page of the
object O21. P12 accesses the object through a virtual
address. Because the corresponding page is not in
local memory, a page fault occurs and consequently
the page-fault-handler sends a request to the server
for the page. Eventually,
• a copy of the page is transferred into the local

memory of N1,
• N1 inserts the edge P12 → O’21 into its

dependency graph (O’21 is a pseudo entity for
O21), and

• N2 inserts the edge P’12 → O21 into its
dependency graph (P’12 is a pseudo entity for
P12).

P11 P12

O11
O' 21

N1 N2

P21 P22

O22O21

P'12

Psuedo entities Modified Objects Unmodified objects

Figure 1 P12 reads from a remote object O21.

6 Examples of implications of this new
representation
In order to illustrate the impact of the new scheme
in single-node stores, we present, in figure 2, a
scenario in which the effect of operations on DDGs
is demonstrated. We then show the effects of
checkpoint and roll-back operations on the resultant
graph.

The figure depicts a sequence of operations
performed in a store starting from an initial state
(e.g. after system restart). We assume that three
processes (P1, P2, and P3) are accessing four
objects (O1, O2, O3, and O4). Processes are shown
by circles in the figure, while objects are shown by

 7

blank (unmodified) or shaded (modified) rectangles.
For simplicity, we do not consider system-related

information maintained on a per object basis.

P1 P2 P3

O1

O2 O 4

O 3

P1 P2 P3

O 1

O 2 O 4

O 3

P1 P2 P3

O1

O2 O 4

O 3

1)
 P 1 r e a d s O 1

 : : N o t h i n g

is

 a d d e d t o t h e g r a p h .

P1 P2 P3

2)

P1

modifies

O2

::

O2

is

connect ed

 t o P 1 t h r o u g h a �
 e d ge,

a

DDG

(DDG1)

is

created.

O 1

O 2 O 4

O 3

3)

P2

modifies

O3

::

O3

is

connect ed

 t o P 2 t h r o u g h a �
 e d g e,

anot her

DDG

(DDG2)

is

crea t e d .

4)
 P 3 r e a d s O 3 : :

 P 3 i s c onne c t e d
 t o D D G 2

 t h r o u g h
a

µ

edge.

5)
 P 3 r e a d s O 1 : :

 N o t h i n g

is

a d d e d

 t o t h e g r a p h s .
6)

P3

modifies

O4::

O4

is

connected

 t o D D G 2
 t h r o u g h a �

 e dge.

7)

P1

modifies

O1::

O1

is

connected

 t o D D G 1
 t h r o u g h a �

 edge.

8)

P2

reads

O1::

DDG1

ands

DDG2

jo i n

 t h r o u g h a µ e d g e .

Figure 2 The scenario of merging directed dependency graphs due to read and write operations

6.1 Implication of new representation on
cascadable operations
DDGs are used to identify entities for which a
checkpoint or roll-back operation should be
propagated. However, the path which should be
traversed for cascading roll-back is different from
that for cascading checkpoint operations as a result
of the unidirectional edges in the graph. We use a
single dependency graph and then apply separate
checkpoint and roll-back algorithms to propagate
the operation.

To this end, the relation ∅ in the dependency
graph has different meanings in terms of cascading
checkpoint or roll-back operation. To distinguish
between our different meanings of the symbol, two
further symbols are introduced to specify the
dependency between two entities in terms of
checkpoint or roll-back. By E1

S
→ E2 we mean that

when E1 is checkpointed, E2 also should be
checkpointed and therefore E1 depends on E2 in
terms of checkpoint. Likewise, E1

R
← E2 means that

E1 depends on E2 in terms of roll-back. Figure 3

shows the relationship between the edges forming a
dependency graph and their meaning in checkpoint
and roll-back graphs. Note that the expression
E1 → E2 is congruent to the expression E2 ← E1.

Dependency Graph Checkpoint Graph Roll-back Graph

→ S
→ R

←

← S
← R

→

↔ S
← and S

→ R
→ and R

←

Figure 3 The relationship between Dependency Graph,
Checkpoint Graph, and Roll-back Graph

As we have shown, read and write operations

have different effects in terms of dependency.
While the write operation makes both sides of the
operation dependent on each other, the read
operation on modified data makes only the reader
process dependent to the read object. As the ratio
of read to write operations in usual applications is
high, we can prevent the propagation of checkpoint
and roll-back in some parts of the graph.

To clarify the distinction between the
implication of DDGs on checkpoint and roll-back

 8

operations, consider a scenario in which a process
P1 reads from a modified object O1. Until the next
checkpoint operation is commenced for process P1,
all actions taken by P1 based on what it has read
from O1 is unstable. During such period of
unstability, either of O1 or P1 may be checkpointed
or rolled back.
1) If O1 is checkpointed, P1 does not have to be

checkpointed. The worst case is that after
checkpointing O1, P1 is rolled back to its last
stable state. This results in no inconsistency as
the stable data in O1 may be read by P1 again.

2) If P1 is checkpointed, O1 must also be
checkpointed. Otherwise, in the case of O1's
roll-back, there is an inconsistent state in which
an orphan page modification has been read by P1.

3) If O1 is rolled back, P1 has to be rolled back.
Otherwise, P1 has read an orphan object
modification and thus an inconsistent state.

4) If P1 is rolled back, O1 does not have to be rolled
back. This is due to the possibility of the repeat
of the lost read operation.

6.2 Checkpoint propagation using DDGs
The checkpoint of an entity requires the checkpoint
of the entity itself, all of its dependents (if any
exist), and the system related data structures to be
achieved as an atomic action. We review the impact
of DDGs on the propagation of checkpoint
operations in this section. To checkpoint an entity
E, E is located in a DDG and the operation is
resumed based on the following algorithm.

Procedure Stabilise (E: entity)

begin

 if E has already set ‘visited’

 then return;

 else set E as ‘visited’;

 for all Ei connected to E do

 begin

 if E
S
→ Ei

 then Stabilise (Ei);

 delete the edge between E and Ei;

 end;

 EntityStabilise (E);

end.

For example, consider the application of the
algorithm to checkpoint P1 in the resultant graph
from the scenario in figure 2. The operation is
propagated to only O1 and O2, as shown in figure 4.
This restricted propagation represents a significant
improvement in performance of the checkpoint
operation in comparison with using Associations; in
that case all entities in the scenario must be
checkpointed. This is more crucial in the case of
distributed dependency graphs where the
propagation of a checkpoint operation may result in

the blocking of all or some entities in the
coordinator node until participant nodes reply.

P1 P2 P3

O1

O2 O4

O3

Figure 4 The state of entities after the checkpoint of p1

6.3 Roll-back propagation using DDGs
A roll-back operation is initiated for an entity
whenever the entity recovers following a system
failure or the abortion of a transaction in an
application. An entity may also be required to roll
back due to the roll-back of a dependent entity, or
even due to the occurrence of a failure in the node
contains some entities dependent on the entity (in
terms of roll-back graph). With minor differences,
the steps described in section 6.2 are followed for
the propagation of the roll-back of an entity E.
After locating the entity E in the graph, operations
resume according to the following algorithm.

Procedure Rollback (E: Entity)

begin

 if E has already ‘visited’

 then return;

 else set E as ‘visited’;

 for all Ei connected to E do

 begin

 if E
R
→ Ei

 then Rollback (Ei)

 delete the edge between E and Ei;

 end;

 EntityRollback (E);

end.

For example, consider the application of the
algorithm to roll back P3 in the graph resulted from
the scenario in figure 2. This leads to the
propagation of the roll-back to only O3 as shown in
figure 6. Such a roll-back would result in the roll-
back of all entities if Associations were used.

P1 P2 P3

O1

O2 O4

O3

Figure 6 The state of entities after the roll-back of P3

 9

7 Simulation results
To evaluate the effect of using DDGs, we simulated
the Monads persistent store when either
Associations or DDGs are used to manage
dependencies. Events considered in the simulation
were: process creation, process termination, object
opening, object closing, entity checkpoint, entity
roll-back, read access, write access, and process
switch. Parameters in the study were: objects size,
processes lifetime, checkpoint operations interval,
roll-back operations interval, locality of accesses,
and the rate of load/store operations. For the results
depicted in figures 6 and 7, we selected 20 seconds
as the mean interval of checkpoint operations, 360
seconds as the mean interval of roll-back operations,
4 as the mean rate of load/store operations, and 10
as the mean locality of accesses. As there was no
difference between a single-node and multi-node
persistent environment to compare the two methods,
we simulated a single-node environment.

The results show that using Associations about
65% more entities are checkpointed (possibly
through propagation from other entities) than when
DDGs are used. Figure 6 shows the cumulative
number of entities checkpointed using Associations
and directed graphs. Using Associations, the
number of rolled back entities is 90% higher than
when DDGs are used. Figure 7 compares
Associations and directed graphs in terms of the
number of rolled back entities.

15000120009000600030000
0

100000

200000

300000

400000

500000

600000

Using DDGsUsing Associations

Time (Sec.)

A
ffe

ct
ed

 E
nt

iti
es

Figure 6 Number of checkpointed entities (cumulative)
using associations and DDGs.

15000120009000600030000
0

1000

2000

3000

4000

5000

6000

Time (sec)

A
ffe

ct
ed

 E
nt

iti
es

Using Associations Using DDGs

Figure 7 Number of rolled back entities (cumulative) using
associations and DDGs.

Conclusion
In this paper we described the shortcomings
inherent in the use of Associations to describe
dependency relationships between processes and
objects in a distributed persistent store. In particular
we showed that the cascade effect of checkpoint
operations resulted in larger checkpoint operations
than absolutely necessary. We also showed that the
cascade effect in roll-back operations resulted in
unnecessary loss of store modification.

We presented an alternate method for describing
entity inter-relationships. This alternate
representation uses directed graphs. By further
separately defining the meaning of graph edges for
checkpoint and roll-back operations, we showed that
it is possible to significantly reduce the cascade
effects of these operations. As a result, checkpoint
and roll-back operations are improved in terms of
efficiency, and the loss of data caused by roll-back
operations is reduced. This is a significant
achievement, because only those modifications
which it is absolutely necessary to reverse are lost as
a result of the roll-back operation. The included
simulation results confirm this claim.

By integrating the management of dependencies
into the virtual memory management, checking to
see whether a DDG should be updated is not
expensive. As virtual pages are the unit of data
transfer in a typical memory management scheme,
detecting dependencies at the level of virtual pages
can be achieved when page faults and write-fault
exceptions are being handled.

Acknowledgements
This research has been supported by the Ministry of
Culture and Higher Educations, the Government of
the I. R. of Iran.

 10

References

[1] Atkinson, M. P., Bailey, P. J., Chisholm, K.
J., Cockshott, P. W. and Morrison, R. “An
Approach to Persistent Programming”, The
Computer Journal, 26(4):360-365, 1983.

[2] Brown, A. L. “Persistent Object Stores”,
Universities of St. Andrews and Glasgow,
Persistent Programming Report 71, 1989.

[3] Cvetanovic, Z. and Bhandarkar, D.
“Characterization of Alpha AXP Performance
Using TP and Spec Workloads”, IEEE
Computer Architecture News, 22(2):60-70,
1994.

[4] Gunaseelan, L., Richard, J. and LeBlanc, J.
“Event Ordering in a Shared Memory
Distributed System”, Proceedings of the 13th
International Conference on Distributed
Computing Systems, Pittsburgh, Pennsylvania,
1993.

[5] Henskens, F. A. “A Capability-based
Persistent Distributed Shared Memory”, PhD
Thesis, University of Newcastle, N.S.W.,
Australia, 1991.

[6] Henskens, F. A. and Rosenberg, J.
“Distributed Persistent Stores”,
Microprocessors and Microsystems,
17(3):147-159, 1993.

[7] Henskens, F. A., Rosenberg, J. and
Hannaford, M. R. “Stability in a Network of
MONADS-PC Computers”, Proceedings of
the International Workshop on Computer
Architectures to support Security and
Persistence of Information, Springer-Verlag
and British Computer Society, pp. 246-256,
1990.

[8] Janssens, B. and Fuchs, W. K. “Reducing
Interprocessor Dependence in Recoverable
Distributed Shared Memory”, In Proceedings
of the 13th Symposium on Reliable Distributed
Systems, IEEE Computer Society Press, Dana
Point, California, pp. 34-41, 1994.

[9] Lamport, L. “Time, Clocks, and the Ordering
of Events in a Distributed Systems”,
Communications of the ACM, 21(7):558:565,
1978.

[10] Rosenberg, J., Henskens, F. A., Brown, A. L.,
Morrison, R. and Munro, D. “Stability in a
Persistent Store Based on a Large Virtual
Memory”, Springer-Verlag and British
Computer Society, pp. 229-245, 1990.

[11] Tong, Z., Kain, R. Y. and Tasi, W. T. “A
Low Overhead Checkpointing and Rollback
Recovery Scheme for Distributed Systems”,
Proceedings of the Eighth Symposium on
Reliable Distributed Systems, pp. 12-20,
1989.

[12] Vaughan, F., Basso, T. L., Dearle, A., Marlin,
C. and Barter, C. “Casper: a Cached
Architecture Supporting Persistence”,
Computing Systems, 5(3):337-359, 1992.

[13] Vaughan, F., Schunke, T., Koch, B., Dearle,
A., Marlin, C. and Barter, C. “A Persistent
Distributed Architecture Supported by the
Mach Operating System”, Proceedings of the
1st USENIX Conference on the Mach
Operating System, pp. 123-140, 1990.

