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Abstract—Deadlock is one of the most serious problems in 
multitasking concurrent programming systems. The deadlock 
problem becomes further complicated when the underlying 
system is distributed and when tasks have timing constraints. 
Deadlock detection and optimization is very difficult in a 
distributed database system because no controller has 
complete and current information about the system and data 
dependencies. The deadlock problem is intrinsic to a 
distributed database system which employs locking as its 
concurrency control algorithm. In this paper, an optimization 
technique for the detected deadlock is presented which 
minimizes the abortion of the selected victim transactions. The 
optimization technique is concerned with the detection of the 
transactions which are the basis for the most of the deadlock 
cycles (either local or global) in the system. The presented 
technique aborts the transaction’s requests which are really to 
blame for the formation of many deadlock cycles. Also the 
presented deadlock detection algorithm does not detect any 
false deadlock or exclude any really existing deadlocks. In this 
technique global deadlock is not dependent on the local 
deadlock system. 

Keywords-TWFG; Priority_Id; Transaction Manager (TM) ; 
Transaction Queue; Most Deadlock Creator (MDC). 

I.  INTRODUCTION   
Concurrency control and deadlock detection is the most 

important problem that must have a powerful attention when 
sharing information in distributed systems. The maturation 
of database management system (DBMS) technology has 
synchronized with significant developments in computer 
network and distributed computing technologies. A 
distributed database (DDB) is a collection of multiple 
logically interrelated databases distributed over a computer 
network [1]. A distributed database management system 
(DDBMS) is the software that permits the management of 
the DDB and makes the distribution transparent to the users. 

In modern computer systems, several transactions may 
compete for a finite number of resources [2]. Upon 
requesting a resource, a transaction enters a wait state if the 
request is not granted due to non-availability of the resource. 
A situation may arise wherein waiting transactions may not 
ever get a chance to change their states. This can occur if the 
requested resources are held by other similarly waiting 
transaction. This situation is called deadlock. 

During the last decade computing systems have 
undergone substantial development, which has greatly 
impacted on distributed database systems. While commercial 

systems are gradually maturing, new challenges are imposed 
by the world-wide interconnection of computer systems [3]. 
This creates an ever growing need for large scale enterprise-
wide distributed solutions. In the future, distributed database 
systems will have to support hundreds or even thousands of 
sites and millions of clients and, therefore, will face 
tremendous scalability challenges with regard to 
performance, availability and administration [3]. Deadlocks 
can arise in each database system that permits concurrent 
execution of transactions using locking protocols, which is 
the case in most of today’s (distributed) database systems. 

In a distributed database system, data access by 
concurrent transactions are synchronized in order to preserve 
database consistency [4]. This synchronization can be 
achieved using concurrency control algorithms such as two 
phase locking (2PL), timestamp ordering [5], optimistic 
concurrency control [6] or a variation of these basic 
algorithms. In practice, the most commonly used 
concurrency control algorithm is 2PL. However, if locking is 
used, a group of transactions may become involved in a 
deadlock [4]. Consequently, some form of deadlock 
resolution must accompany 2PL. 

In a distributed database system, although a transaction 
may perform all of its actions at the site in which it 
originates, it may also perform actions (or actions may be 
performed on behalf of it) at other than the original site. If 
this happens, an agent [7] is created at the remote site to 
represent the transaction at that site. This agent becomes part 
of the original transaction for concurrency control and 
recovery purposes. Many algorithms have been proposed to 
detect deadlocks in distributed database systems [3, 4, 8-18] . 
Some methods are based on transmitting probes between 
sites. Probes are special messages used to detect deadlocks. 
Probes (these messages) follow the edges of the wait-for 
graph without constructing a separate representation of the 
graph [9, 10, 17]. The advantage of this approach is that 
probe algorithms are more efficient than wait-for-graphs. 
The disadvantage of the probe approach is that after 
deadlock is detected, the constituents of the cycle remain to 
be discovered.  

The distributed deadlock detection algorithms that have 
been proposed are divided into two categories. Algorithms 
that belong to the first category pass information about 
transaction requests to maintain a global wait-for-graph. In 
the algorithms in the second category, simpler messages are 
sent among transactions; no global wait-for-graph is 
explicitly constructed.  However, a cycle in the graph will 
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ultimately cause messages to return to the initiator of the 
deadlock detection message, signaling the existence of 
deadlock.  

The authors  presented the deadlock detection technique 
in [19] that is based on creating Linear Transaction Structure 
(LTS) to find local cycles for each site of distributed 
database systems (DDBS). To find the global deadlock cycle 
Distributed Transaction Structure (DTS) is used for DDBS. 
In each site, each transaction has a unique priority id 
assigned by the transaction manager (TM); priority id is used 
to find the youngest transaction which caused a deadlock 
cycle. Transaction Queues (TQ) are used to store the 
transaction’s priority id which forms cycles in LTS and DTS. 
The proposed technique is efficient as it does not detect any 
false deadlock. But the problem is that the technique ( in [19] 
) always aborts the youngest victim transaction from detected 
local and global cycles. So, always aborting youngest victim 
transactions, some (essential) requests from transactions can 
be excluded from the system. Therefore the transactions (are 
really supposed to be expelled from the system) which are 
responsible for the creation of many deadlock cycles may 
still exist in the system. 

In this paper, we describe the deadlock optimization 
technique which is concerned with the detection of the 
transactions which are the source for the most of the 
deadlock cycles (either local or global) in the system. The 
presented technique aborts the transaction’s requests which 
are really responsible for the formation of many deadlock 
cycles. The optimization technique based on some 
definitions which execute mathematical functions on the 
detected local and global deadlock cycles. The technique can 
be applied to all different types of complex transaction wait 
for graph (TWFG). 

The remainder of this paper is organized as follows: The 
Framework of the Distributed Deadlock Optimization is 
presented in section II. Explanation of the Deadlock 
Optimization is described in section III. The paper concludes 
with a discussion and final remarks in section IV. 

 

II. FRAMEWORK OF DEADLOCK OPTIMIZATION  
The authors  presented the deadlock detection technique 

in [19] that is based on the following Rules (1-6):  
 

Rule-1: Each Local deadlock cycle LDi is detected from 
the values of LTSi . A global deadlock cycle GDC is 
calculated from a set of { DTSi , DTSi+1, DTSi+2 , …………. 
DTSn } . GDC is not dependent on the set of {LDi , LDi+1 , 
LDi+2 ……..LDn}.  

Rule-2: {( ∀q∈LTSi (p,q) ⎜∃ LDi ; iff  (LTSi[qk]= 
LTSi[pj] ∨ LTSi[pj+1] ∨ LTSi[pj+2] ∨…… ∨ LTSi[pk-1] ) ∧ ( 
LTSi(qj)= LTSi[pj+1] ∧ LTSi(qj+1)= LTSi[pj+2], ∧ LTSi(qj+2)= 
LTSi[pj+3] ∧ ……∧ LTSi(qk-1)= LTSi[pk]) • LDi ={ 
LTSi[pj],LTSi[qj], LTSi[qj+1], LTSi[qj+2] ……LTSi[qk-1]( 
LTSi[pk] ), LTSi[qk] };   1<= i<=n;  j<=k<=N; j>0 }.  

 
Rule-3: {∃ yvictim(Tidv1): TQ[PTid1,………PTid(n-1), 

PTid(n)] ⎜ iff (PTid1>PTid2 >………..>PTidn )  • yvictim (Tidv1) 

=PTid(n); PTid1 ⇒  PTid(LTSi[pj]), PTid2 ⇒  PTid (LTSi[qj], PTid3 

⇒  PTid (LTSi[qj+1]), …………………… 
PTid(n-1) ⇒ PTid (LTSi[qk-1]) ∨ PTid (LTSi[pk]) , PTid(n) ⇒  

PTid (LTSi[qk])  }. 
 
Rule-4: Abort the request from yvictim (youngest 

victim) transaction; from each calculated LDi through all 
distributed sites of the database systems. 

 
Rule-5: { ∀q∈LTSi (p,q) , ∀p∈LTSi+1 (p,q) ⎜ ∃ qk=pk • 

LTSi ↔ LTSi+1 } ∨ { ∀q ∈LTSi+1(p,q) , ∀p∈LTSi (p,q) ⎜ ∃ 
qk=pk  • LTSi+1 ↔ LTSi } ∨ { ∀q∈LTSi(p,q) , ∀p∈LTSn 
(p,q) ⎜ ∃ qk=pk  • LTSi↔ LTSn}. 

 
Rule-6: if LTSi ↔ LTSi+1 ; at first, DM starts storing the 

transaction’s (those are connected to other sites.) intra 
requests (connectivity) into DTS. Data Manager (DM) then 
records the request of transactions between LTSi, LTSi+1 into 
DTS. GDC is detected applying definition 2 to all of the 
calculated DTS from the whole distributed database system 
(DDBS), yvictimpair is aborted from each DTS applying 
definition 3, to free from (GDC) global deadlock cycle. 

In the deadlock detection and optimization technique, a 
Linear Transaction Structure (LTS) is maintained for the 
transactions of each local site of the database systems and 
Distributed Transaction Structure’s (DTS) are used to handle 
the global deadlock among the distributed sites. Each 
transaction is assigned a unique Priority Id from the local 
Transaction Manager (TM) of the systems. All the local 
TM’s are controlled by Global TM (GTM). GTM also 
manages the TQ for DTS. The existence of the cycle from in 
local LTS represents a local deadlock and the existence of a 
cycle in the DTS represents a global deadlock. The proposed 
technique uses a graph (TWFG) to represent the 
transaction’s data request; that is maintained by Global 
Scheduler (GS). GS also collects the request (information) of 
the transaction from each local scheduler (S). 

This technique assures that global deadlock is not 
dependent on local deadlock. On the other words, local 
deadlock does not cause the global deadlock. The victim 
transactions are (youngest transactions) decided based on 
priority id (from Transaction Queue (TQ)) from the detected 
cycles. This technique stores the id (number) of each 
transaction to their corresponding LTS and DTS whilst 
finding the local and global deadlock cycles.  According to 
this approach, no false deadlock is detected or does not 
exclude any really deadlocked cycle.  

If any transaction Tp requests a data item that is held by 
another transaction Tq , this technique stores the values of p 
and q to the linear transaction structure (LTS), where p and q 
represents their corresponding transaction number. Each row 
of the LTS stores a pair of values (p, q). Each site must have 
its own LTS. It is assumed that the total no of distributed 
sites are n, total number of transaction pairs in each LTS are 
N. 

Distributed Transaction Structure (DTS) generally stores 
all the transactions which are interconnected (requests for 
data item from other sites) from one site to another site. DTS 
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also records the transaction’s (those are connected to other 
sites) intra requests (connectivity). DTS is managed by Data 
Manager (DM). Each transaction should have a unique 
priority transaction id named PTid from transaction manager 
(TM). Transaction queue (TQ)   is used to store the PTid  for 
the abortion of the youngest (victim) transaction from a 
deadlocked cycle.  

To find local deadlock, DM starts storing transaction’s 
requests for data item in LTS, from any transaction in any 
site. TM records priority transaction id in TQ for those 
transactions which form cycles in LTS; it is recommended 
that (any) starting transaction in the cycle has the highest 
priority Id (but the starting transaction in LTS could be any 
transaction). Whilst detecting global deadlock, at first Data 
Manager (DM) starts storing the intra connected 
transaction’s (those are connected to other sites) request in 
DTS from any site. After then, DM records the transaction 
requests from site to site. This is to provide less priority id 
for the transaction’s data request from one site to another 
site, as in general , global deadlock cycles become free from 
deadlock after aborting the transaction’s data request from 
one site to another site. Similarly GTM records priority 
transaction id in TQ for those transactions which form cycles 
in DTS. Generally in TQ, the priority id in the first position 
has the leading priority and the priority id in the last position 
has lowest priority. The priority id which has lowest priority 
is the youngest transaction.  

The following Rules (7-15) are also necessary to 
implement the optimization technique within the detected 
deadlocks:  
Rule-7: 

Let each distributed site has more than one local 
deadlock cycles (LDi , LDi+1 … LDn) and MLDC be the 
most local deadlock creator which is a set of at least one or 
more transaction pair; MLDC is defined as follows: 

MLDCi = {LDi ∩ LDi+1 } 
MLDCi+1 = {LDi+2 ∩ LDi+3 } 
……………………………… 
MLDCn= {LDn-1 ∩ LDn }; where LDi , LDi+1 , LDi+2 

.…..LDn are (a set of transactions which form a local cycle) 
detected from the values of LTSi , LTSi+1 , LTSi+2 
……………………. LTSn  respectively.  
Rule-8: 

If there exists more than one transaction pair in each of 
MLDC set, abort any one of the data request (from the 
transaction pairs) from each of the {MLDCi, MLDCi+1 ….. 
MLDCn }; otherwise abort the single existing data request 
from the transaction pairs. 
Rule-9: 

Let,   Ki={ LDi  ∪ LDi+1 }\ MLDCi }  
        Ki+1 = LDi +2 ∪ LDi+3 }\ MLDCi+1}   
        ……………………………………………… 
        Kn={{ LDn  U LDn-1 }\ MLDCn }  
If (∃ a cycle in Ki ∨  Ki+1 ∨...........∨  Kn), apply rule-7 and 

8 for the minimization of the local victim transaction; 
otherwise deadlock free.  
Rule-10: 

Let two distributed sites have more than one global 
deadlock cycles (GDC) and MGDC be the most global 
deadlock creator which is a set of at least one or more 
transaction pair; MGDC is defined as follows: 

MGDCi = {GDCi ∩ GDCi+1 } 
MGDCi+1 = {GDCi+2 ∩ GDCi+3 } 
……………………………… 
MGDCn= {GDCn-1 ∩ GDCn }; where GDCi , GDCi+1 , 

GDCi+2 ……..GDCn are (a set of transactions which form a 
global cycle) detected from the values of DTSi , DTSi+1 , 
DTSi+2 ……………………. DTSn respectively. 

 
Rule-11: 

If there exists more than one transaction pair in each of 
MGDC set, abort any one of the data request (from the 
transaction pairs) from each of the {MGDCi, MGDCi+1 ….. 
MGDCn }; otherwise abort the only existing data request 
from the transaction pairs. 
 
Rule-12: 

Let,   Pi={ GDCi  ∪ GDCi+1 }\ MGDCi }  
Pi+1 = {GDCi +2 ∪ GDCi+3 }\ MGDCi+1}   
………………………………………………… 
Pn={{ GDCn  ∪ GDCn-1 }\ MGDCCn }  
If (∃ a cycle in Pi ∨ Pi+1 ∨...........∨  Pn) , then apply 

definition 10 and 11 for the minimization of the global 
victim transaction. 
Rule-13: 

If there exist only one global deadlock cycle (GDCi) 
between two sites (say Si and Sk ) and only one local 
deadlock cycle (LDi or LDk) in any of the sites, then most 
deadlock creator (MDC) is optimized as follows: 

MDC= GDCi ∩ LDi  ∨ GDCi ∩ LDk . Abort the MDC 
transaction pair from the two distributed sites of the database 
systems.  
Rule-14 

If there exist only one global deadlock cycle (GDCi) 
between two sites (Si and Sk) and one local deadlock cycle in 
both of sites (Si and Sk ), then most deadlock creator (MDC) 
is optimized as follows: 

MDCSi= GDCi ∩ LDi   ∧ MDCSk = GDCi ∩ LDk  
Abort the transaction pair from MDCSi  and MDCSk 

between the two distributed sites of the database systems.  
Rule 15: 

If any distributed site has no local deadlock but have the 
global deadlocks between two distributed sites, then apply 
rule 10 and 11.If there are no global deadlocks among the 
distributed sites but have more than one local deadlock in 
each of the site, then apply rule-7 and 8. 

III. EXPLANATION OF THE OPTIMIZATION TECHNIQUE 
The functionality of the optimization of detected 

deadlock is demonstrated in the following example 
considering Figure 1.  In Figure 1, site-1, site-2, and site-3 
have 4, 3, and 1 local deadlock respectively. There are 2 
global deadlocks between site-1 and site-2 and 1 global 
deadlock between site-2 and site-3. According to definition 7 
and 8, the data (resource) request from the transaction pairs 
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(which create most local deadlock cycle) { 
 T -4T -6 },{  T -7T -5 },{  T -11T -14 },and 

{  T -16T -14 } are aborted . According to definition 10 
and 11, the data request of the transaction pair 
{  T -11T -9 } is aborted to free from two global 
deadlock cycles. According to definition 13, the data 
(resource) request from the transaction pair { 

 T -19T -20 } is aborted to minimize the deadlock. The 
optimized deadlock free graph is presented in Figure 2. 
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Figure 1.  Complex TWFG consist local and global deadlock within three 

sites S1, S2 and S3. 
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Figure 2.  Optimized TWFG free from deadlock within three sites S1, S2 
and S3. 

IV. PREVIOUS WORK 
A lot of works regarding distributed deadlock detection are 
elaborated in [3, 8-10, 12, 14, 20-23]. To the best of our 
knowledge, very few techniques have been proposed for 
deadlock optimization within the detected deadlocks. Some 
of the algorithms based on deadlock detection are precisely 
described in the following: 

A. Chandy & Mishra Algorithm [9] 
This algorithm uses transaction wait for graphs (TWFG)  

to represent the status of transactions at the local sites and 
uses probes to detect global deadlocks. The algorithm by 
which a transaction Ti determines if it is deadlocked is 
called a probe computation. A probe is issued if a 
transaction begins to wait on another transaction and gets 
propagated from one site to another based on the status of 
the transaction that received the probe. The probes are 
meant only for deadlock detection and are distinct from 
requests and replies. A transaction sends at most one probe 
in any probe computation. If the initiator of the probe 
computation gets back the probe, then it is involved in a 
deadlock. This scheme does not suffer from false deadlock 
detection even if the transactions do not obey the two-phase 
locking protocol. 

B. Sinha’s Scheme[11] 
This algorithm, an extension to Chandy’s scheme [9] is 

based on priorities of transactions. Using priorities, the 
number of messages required for deadlock detection is 
reduced considerably. An advantage of the scheme is that 
the number of messages in the best and worst cases can be 
easily determined.        

C. Obermack’s Algorithm[11] 
This algorithm at each site builds and analyzes directed 

TWFG and uses a distinguished node at each site. This node 
is called “external” and is used to represent the portion of 
TWFG that is external (unknown) to the site. This algorithm 
does not work correctly; it detects false deadlocks because 
the wait-for graphs constructed do not represent a snap-shot 
of the global TWFG at any instant. 

D. Menasce’s Scheme [10] 
This algorithm was the first to use a condensed transaction-
wait-for graph (TWFG) in which the vertices represent 
transactions and edges indicate dependencies between 
transactions. This algorithm can fail to detect some 
deadlocks and may discover false deadlocks.  

E. Ho’s Algorithm [12] 
According to this [12] approach, the transaction table at 

each site  maintains information regarding resources held 
and waited on by local transactions. The resources table at 
each of the sites maintains information regarding the 
transactions holding and waiting for local resources. 
Periodically, a site is chosen as a central controller 
responsible for performing deadlock detection. The 
drawback of this scheme is that it requires 4n messages, 
where n is the number of sites in the system. 

F. Kawazu’s Algorithm [13] 
 The algorithm is based on two phases. In the first phase 

local deadlocks are detected, and in the second phase global 
deadlocks are detected in the absence of local deadlocks. 
This scheme suffers from phantom deadlocks, because each 
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local wait-for graph is not collected at the same time due to 
communication delays. Also, in case a transaction 
simultaneously waits for more than one resource, some 
global deadlocks may go undetected since the global 
deadlock detection is initiated only if no local deadlock is 
detected. Also Bracha’s [14], Mitchell’s [15] and 
Krivokapic’s [1] algorithms have been described to detect 
deadlock in distributed database.  

V. CONCLUSION AND FUTURE WORK 
The deadlock problem involves a circular waiting where one 
or more transactions are waiting for resources to become an 
available and those resources are held by some other 
transactions that are in turn blocked until resources held by 
the first transaction or transactions are released. We 
presented an approach to detect both local deadlocks and 
global deadlocks in [19]. The technique uses TQ 
(Transaction queue) to store the priority id for all 
transactions which are in local deadlock cycles or in global 
deadlock cycles. Based on the priority id, the youngest 
transactions are aborted to free, the system from deadlock 
cycles. As a result, some crucial requests from the 
transactions can be expelled from the system because of the 
abortion of youngest victim pair. Therefore the transactions 
which are really responsible for the creation of major 
deadlock cycles may remain in the system. To handle this 
problem, this paper describes a technique to optimize the 
detected deadlock.  

In a DBMS, deadlock resolution means that one or more 
of the participating transactions, the victim, is chosen to be 
aborted, thereby resolving the deadlock [3]. But when more 
than one deadlock cycle is involved in any distributed site or 
among the sites, it is required to optimize the request of the 
transactions which are involved for the cause of the major 
deadlock cycles. Handling deadlock involves two problems: 
deadlock detection and deadlock resolution. A deadlock 
detection algorithm or technique is correct if it satisfies two 
conditions: (1) every deadlock is eventually detected, and (2) 
every detected deadlock really exists, i.e., only genuine 
deadlocks are detected. Our proposed optimization technique 
also maintains these major features whilst minimizing the 
detected deadlock cycles. 
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