
Optimization of Detected Deadlock Views of Distributed Database

B.M. Monjurul Alom
School of Electrical engineering and Computer Science

University of Newcastle, NSW 2308
Australia

Monjurul.Alom@newcastle.edu.au

Frans Henskens, Michael Hannaford
School of Electrical engineering and Computer Science

University of Newcastle, NSW 2308
Australia

Frans.Henskens, Michael.Hannaford@newcastle.edu.au

Abstract—Deadlock is one of the most serious problems in
multitasking concurrent programming systems. The deadlock
problem becomes further complicated when the underlying
system is distributed and when tasks have timing constraints.
Deadlock detection and optimization is very difficult in a
distributed database system because no controller has
complete and current information about the system and data
dependencies. The deadlock problem is intrinsic to a
distributed database system which employs locking as its
concurrency control algorithm. In this paper, an optimization
technique for the detected deadlock is presented which
minimizes the abortion of the selected victim transactions. The
optimization technique is concerned with the detection of the
transactions which are the basis for the most of the deadlock
cycles (either local or global) in the system. The presented
technique aborts the transaction’s requests which are really to
blame for the formation of many deadlock cycles. Also the
presented deadlock detection algorithm does not detect any
false deadlock or exclude any really existing deadlocks. In this
technique global deadlock is not dependent on the local
deadlock system.

Keywords-TWFG; Priority_Id; Transaction Manager (TM) ;
Transaction Queue; Most Deadlock Creator (MDC).

I. INTRODUCTION
Concurrency control and deadlock detection is the most

important problem that must have a powerful attention when
sharing information in distributed systems. The maturation
of database management system (DBMS) technology has
synchronized with significant developments in computer
network and distributed computing technologies. A
distributed database (DDB) is a collection of multiple
logically interrelated databases distributed over a computer
network [1]. A distributed database management system
(DDBMS) is the software that permits the management of
the DDB and makes the distribution transparent to the users.

In modern computer systems, several transactions may
compete for a finite number of resources [2]. Upon
requesting a resource, a transaction enters a wait state if the
request is not granted due to non-availability of the resource.
A situation may arise wherein waiting transactions may not
ever get a chance to change their states. This can occur if the
requested resources are held by other similarly waiting
transaction. This situation is called deadlock.

During the last decade computing systems have
undergone substantial development, which has greatly
impacted on distributed database systems. While commercial

systems are gradually maturing, new challenges are imposed
by the world-wide interconnection of computer systems [3].
This creates an ever growing need for large scale enterprise-
wide distributed solutions. In the future, distributed database
systems will have to support hundreds or even thousands of
sites and millions of clients and, therefore, will face
tremendous scalability challenges with regard to
performance, availability and administration [3]. Deadlocks
can arise in each database system that permits concurrent
execution of transactions using locking protocols, which is
the case in most of today’s (distributed) database systems.

In a distributed database system, data access by
concurrent transactions are synchronized in order to preserve
database consistency [4]. This synchronization can be
achieved using concurrency control algorithms such as two
phase locking (2PL), timestamp ordering [5], optimistic
concurrency control [6] or a variation of these basic
algorithms. In practice, the most commonly used
concurrency control algorithm is 2PL. However, if locking is
used, a group of transactions may become involved in a
deadlock [4]. Consequently, some form of deadlock
resolution must accompany 2PL.

In a distributed database system, although a transaction
may perform all of its actions at the site in which it
originates, it may also perform actions (or actions may be
performed on behalf of it) at other than the original site. If
this happens, an agent [7] is created at the remote site to
represent the transaction at that site. This agent becomes part
of the original transaction for concurrency control and
recovery purposes. Many algorithms have been proposed to
detect deadlocks in distributed database systems [3, 4, 8-18] .
Some methods are based on transmitting probes between
sites. Probes are special messages used to detect deadlocks.
Probes (these messages) follow the edges of the wait-for
graph without constructing a separate representation of the
graph [9, 10, 17]. The advantage of this approach is that
probe algorithms are more efficient than wait-for-graphs.
The disadvantage of the probe approach is that after
deadlock is detected, the constituents of the cycle remain to
be discovered.

The distributed deadlock detection algorithms that have
been proposed are divided into two categories. Algorithms
that belong to the first category pass information about
transaction requests to maintain a global wait-for-graph. In
the algorithms in the second category, simpler messages are
sent among transactions; no global wait-for-graph is
explicitly constructed. However, a cycle in the graph will

2010 International Conference on Data Storage and Data Engineering

978-0-7695-3958-4/10 $26.00 © 2010 IEEE

DOI 10.1109/DSDE.2010.41

44

2010 International Conference on Data Storage and Data Engineering

978-0-7695-3958-4/10 $26.00 © 2010 IEEE

DOI 10.1109/DSDE.2010.41

44

ultimately cause messages to return to the initiator of the
deadlock detection message, signaling the existence of
deadlock.

The authors presented the deadlock detection technique
in [19] that is based on creating Linear Transaction Structure
(LTS) to find local cycles for each site of distributed
database systems (DDBS). To find the global deadlock cycle
Distributed Transaction Structure (DTS) is used for DDBS.
In each site, each transaction has a unique priority id
assigned by the transaction manager (TM); priority id is used
to find the youngest transaction which caused a deadlock
cycle. Transaction Queues (TQ) are used to store the
transaction’s priority id which forms cycles in LTS and DTS.
The proposed technique is efficient as it does not detect any
false deadlock. But the problem is that the technique (in [19]
) always aborts the youngest victim transaction from detected
local and global cycles. So, always aborting youngest victim
transactions, some (essential) requests from transactions can
be excluded from the system. Therefore the transactions (are
really supposed to be expelled from the system) which are
responsible for the creation of many deadlock cycles may
still exist in the system.

In this paper, we describe the deadlock optimization
technique which is concerned with the detection of the
transactions which are the source for the most of the
deadlock cycles (either local or global) in the system. The
presented technique aborts the transaction’s requests which
are really responsible for the formation of many deadlock
cycles. The optimization technique based on some
definitions which execute mathematical functions on the
detected local and global deadlock cycles. The technique can
be applied to all different types of complex transaction wait
for graph (TWFG).

The remainder of this paper is organized as follows: The
Framework of the Distributed Deadlock Optimization is
presented in section II. Explanation of the Deadlock
Optimization is described in section III. The paper concludes
with a discussion and final remarks in section IV.

II. FRAMEWORK OF DEADLOCK OPTIMIZATION
The authors presented the deadlock detection technique

in [19] that is based on the following Rules (1-6):

Rule-1: Each Local deadlock cycle LDi is detected from
the values of LTSi . A global deadlock cycle GDC is
calculated from a set of { DTSi , DTSi+1, DTSi+2 , ………….
DTSn } . GDC is not dependent on the set of {LDi , LDi+1 ,
LDi+2 ……..LDn}.

Rule-2: {(∀q∈LTSi (p,q) ⎜∃ LDi ; iff (LTSi[qk]=
LTSi[pj] ∨ LTSi[pj+1] ∨ LTSi[pj+2] ∨…… ∨ LTSi[pk-1]) ∧ (
LTSi(qj)= LTSi[pj+1] ∧ LTSi(qj+1)= LTSi[pj+2], ∧ LTSi(qj+2)=
LTSi[pj+3] ∧ ……∧ LTSi(qk-1)= LTSi[pk]) • LDi ={
LTSi[pj],LTSi[qj], LTSi[qj+1], LTSi[qj+2] ……LTSi[qk-1](
LTSi[pk]), LTSi[qk] }; 1<= i<=n; j<=k<=N; j>0 }.

Rule-3: {∃ yvictim(Tidv1): TQ[PTid1,………PTid(n-1),

PTid(n)] ⎜ iff (PTid1>PTid2 >………..>PTidn) • yvictim (Tidv1)

=PTid(n); PTid1 ⇒ PTid(LTSi[pj]), PTid2 ⇒ PTid (LTSi[qj], PTid3

⇒ PTid (LTSi[qj+1]), ……………………
PTid(n-1) ⇒ PTid (LTSi[qk-1]) ∨ PTid (LTSi[pk]) , PTid(n) ⇒

PTid (LTSi[qk]) }.

Rule-4: Abort the request from yvictim (youngest

victim) transaction; from each calculated LDi through all
distributed sites of the database systems.

Rule-5: { ∀q∈LTSi (p,q) , ∀p∈LTSi+1 (p,q) ⎜ ∃ qk=pk •

LTSi ↔ LTSi+1 } ∨ { ∀q ∈LTSi+1(p,q) , ∀p∈LTSi (p,q) ⎜ ∃
qk=pk • LTSi+1 ↔ LTSi } ∨ { ∀q∈LTSi(p,q) , ∀p∈LTSn
(p,q) ⎜ ∃ qk=pk • LTSi↔ LTSn}.

Rule-6: if LTSi ↔ LTSi+1 ; at first, DM starts storing the

transaction’s (those are connected to other sites.) intra
requests (connectivity) into DTS. Data Manager (DM) then
records the request of transactions between LTSi, LTSi+1 into
DTS. GDC is detected applying definition 2 to all of the
calculated DTS from the whole distributed database system
(DDBS), yvictimpair is aborted from each DTS applying
definition 3, to free from (GDC) global deadlock cycle.

In the deadlock detection and optimization technique, a
Linear Transaction Structure (LTS) is maintained for the
transactions of each local site of the database systems and
Distributed Transaction Structure’s (DTS) are used to handle
the global deadlock among the distributed sites. Each
transaction is assigned a unique Priority Id from the local
Transaction Manager (TM) of the systems. All the local
TM’s are controlled by Global TM (GTM). GTM also
manages the TQ for DTS. The existence of the cycle from in
local LTS represents a local deadlock and the existence of a
cycle in the DTS represents a global deadlock. The proposed
technique uses a graph (TWFG) to represent the
transaction’s data request; that is maintained by Global
Scheduler (GS). GS also collects the request (information) of
the transaction from each local scheduler (S).

This technique assures that global deadlock is not
dependent on local deadlock. On the other words, local
deadlock does not cause the global deadlock. The victim
transactions are (youngest transactions) decided based on
priority id (from Transaction Queue (TQ)) from the detected
cycles. This technique stores the id (number) of each
transaction to their corresponding LTS and DTS whilst
finding the local and global deadlock cycles. According to
this approach, no false deadlock is detected or does not
exclude any really deadlocked cycle.

If any transaction Tp requests a data item that is held by
another transaction Tq , this technique stores the values of p
and q to the linear transaction structure (LTS), where p and q
represents their corresponding transaction number. Each row
of the LTS stores a pair of values (p, q). Each site must have
its own LTS. It is assumed that the total no of distributed
sites are n, total number of transaction pairs in each LTS are
N.

Distributed Transaction Structure (DTS) generally stores
all the transactions which are interconnected (requests for
data item from other sites) from one site to another site. DTS

4545

also records the transaction’s (those are connected to other
sites) intra requests (connectivity). DTS is managed by Data
Manager (DM). Each transaction should have a unique
priority transaction id named PTid from transaction manager
(TM). Transaction queue (TQ) is used to store the PTid for
the abortion of the youngest (victim) transaction from a
deadlocked cycle.

To find local deadlock, DM starts storing transaction’s
requests for data item in LTS, from any transaction in any
site. TM records priority transaction id in TQ for those
transactions which form cycles in LTS; it is recommended
that (any) starting transaction in the cycle has the highest
priority Id (but the starting transaction in LTS could be any
transaction). Whilst detecting global deadlock, at first Data
Manager (DM) starts storing the intra connected
transaction’s (those are connected to other sites) request in
DTS from any site. After then, DM records the transaction
requests from site to site. This is to provide less priority id
for the transaction’s data request from one site to another
site, as in general , global deadlock cycles become free from
deadlock after aborting the transaction’s data request from
one site to another site. Similarly GTM records priority
transaction id in TQ for those transactions which form cycles
in DTS. Generally in TQ, the priority id in the first position
has the leading priority and the priority id in the last position
has lowest priority. The priority id which has lowest priority
is the youngest transaction.

The following Rules (7-15) are also necessary to
implement the optimization technique within the detected
deadlocks:
Rule-7:

Let each distributed site has more than one local
deadlock cycles (LDi , LDi+1 … LDn) and MLDC be the
most local deadlock creator which is a set of at least one or
more transaction pair; MLDC is defined as follows:

MLDCi = {LDi ∩ LDi+1 }
MLDCi+1 = {LDi+2 ∩ LDi+3 }
………………………………
MLDCn= {LDn-1 ∩ LDn }; where LDi , LDi+1 , LDi+2

.…..LDn are (a set of transactions which form a local cycle)
detected from the values of LTSi , LTSi+1 , LTSi+2
……………………. LTSn respectively.
Rule-8:

If there exists more than one transaction pair in each of
MLDC set, abort any one of the data request (from the
transaction pairs) from each of the {MLDCi, MLDCi+1 …..
MLDCn }; otherwise abort the single existing data request
from the transaction pairs.
Rule-9:

Let, Ki={ LDi ∪ LDi+1 }\ MLDCi }
 Ki+1 = LDi +2 ∪ LDi+3 }\ MLDCi+1}
 ………………………………………………
 Kn={{ LDn U LDn-1 }\ MLDCn }
If (∃ a cycle in Ki ∨ Ki+1 ∨...........∨ Kn), apply rule-7 and

8 for the minimization of the local victim transaction;
otherwise deadlock free.
Rule-10:

Let two distributed sites have more than one global
deadlock cycles (GDC) and MGDC be the most global
deadlock creator which is a set of at least one or more
transaction pair; MGDC is defined as follows:

MGDCi = {GDCi ∩ GDCi+1 }
MGDCi+1 = {GDCi+2 ∩ GDCi+3 }
………………………………
MGDCn= {GDCn-1 ∩ GDCn }; where GDCi , GDCi+1 ,

GDCi+2 ……..GDCn are (a set of transactions which form a
global cycle) detected from the values of DTSi , DTSi+1 ,
DTSi+2 ……………………. DTSn respectively.

Rule-11:

If there exists more than one transaction pair in each of
MGDC set, abort any one of the data request (from the
transaction pairs) from each of the {MGDCi, MGDCi+1 …..
MGDCn }; otherwise abort the only existing data request
from the transaction pairs.

Rule-12:

Let, Pi={ GDCi ∪ GDCi+1 }\ MGDCi }
Pi+1 = {GDCi +2 ∪ GDCi+3 }\ MGDCi+1}
…………………………………………………
Pn={{ GDCn ∪ GDCn-1 }\ MGDCCn }
If (∃ a cycle in Pi ∨ Pi+1 ∨...........∨ Pn) , then apply

definition 10 and 11 for the minimization of the global
victim transaction.
Rule-13:

If there exist only one global deadlock cycle (GDCi)
between two sites (say Si and Sk) and only one local
deadlock cycle (LDi or LDk) in any of the sites, then most
deadlock creator (MDC) is optimized as follows:

MDC= GDCi ∩ LDi ∨ GDCi ∩ LDk . Abort the MDC
transaction pair from the two distributed sites of the database
systems.
Rule-14

If there exist only one global deadlock cycle (GDCi)
between two sites (Si and Sk) and one local deadlock cycle in
both of sites (Si and Sk), then most deadlock creator (MDC)
is optimized as follows:

MDCSi= GDCi ∩ LDi ∧ MDCSk = GDCi ∩ LDk
Abort the transaction pair from MDCSi and MDCSk

between the two distributed sites of the database systems.
Rule 15:

If any distributed site has no local deadlock but have the
global deadlocks between two distributed sites, then apply
rule 10 and 11.If there are no global deadlocks among the
distributed sites but have more than one local deadlock in
each of the site, then apply rule-7 and 8.

III. EXPLANATION OF THE OPTIMIZATION TECHNIQUE
The functionality of the optimization of detected

deadlock is demonstrated in the following example
considering Figure 1. In Figure 1, site-1, site-2, and site-3
have 4, 3, and 1 local deadlock respectively. There are 2
global deadlocks between site-1 and site-2 and 1 global
deadlock between site-2 and site-3. According to definition 7
and 8, the data (resource) request from the transaction pairs

4646

(which create most local deadlock cycle) {
 T -4T -6 },{ T -7T -5 },{ T -11T -14 },and

{ T -16T -14 } are aborted . According to definition 10
and 11, the data request of the transaction pair
{ T -11T -9 } is aborted to free from two global
deadlock cycles. According to definition 13, the data
(resource) request from the transaction pair {

 T -19T -20 } is aborted to minimize the deadlock. The
optimized deadlock free graph is presented in Figure 2.

T-1

T-4

T-5

T-6

T-3

T-7

T-8

T-10
T-9

T-2

T-12 T-13

T-14

T-16

T-11

T-15

T-18

T-17

T-19 T-20

T-22T-21

Site-1

Site-2

Site-3

Figure 1. Complex TWFG consist local and global deadlock within three

sites S1, S2 and S3.

T-1

T-4

T-5

T-6

T-3

T-7

T-8

T-10
T-9

T-2

T-12 T-13

T-14

T-16

T-11

T-15

T-18

T-17

T-19 T-20

T-22T-21

Site-1

Site-2

Site-3

Figure 2. Optimized TWFG free from deadlock within three sites S1, S2
and S3.

IV. PREVIOUS WORK
A lot of works regarding distributed deadlock detection are
elaborated in [3, 8-10, 12, 14, 20-23]. To the best of our
knowledge, very few techniques have been proposed for
deadlock optimization within the detected deadlocks. Some
of the algorithms based on deadlock detection are precisely
described in the following:

A. Chandy & Mishra Algorithm [9]
This algorithm uses transaction wait for graphs (TWFG)

to represent the status of transactions at the local sites and
uses probes to detect global deadlocks. The algorithm by
which a transaction Ti determines if it is deadlocked is
called a probe computation. A probe is issued if a
transaction begins to wait on another transaction and gets
propagated from one site to another based on the status of
the transaction that received the probe. The probes are
meant only for deadlock detection and are distinct from
requests and replies. A transaction sends at most one probe
in any probe computation. If the initiator of the probe
computation gets back the probe, then it is involved in a
deadlock. This scheme does not suffer from false deadlock
detection even if the transactions do not obey the two-phase
locking protocol.

B. Sinha’s Scheme[11]
This algorithm, an extension to Chandy’s scheme [9] is

based on priorities of transactions. Using priorities, the
number of messages required for deadlock detection is
reduced considerably. An advantage of the scheme is that
the number of messages in the best and worst cases can be
easily determined.

C. Obermack’s Algorithm[11]
This algorithm at each site builds and analyzes directed

TWFG and uses a distinguished node at each site. This node
is called “external” and is used to represent the portion of
TWFG that is external (unknown) to the site. This algorithm
does not work correctly; it detects false deadlocks because
the wait-for graphs constructed do not represent a snap-shot
of the global TWFG at any instant.

D. Menasce’s Scheme [10]
This algorithm was the first to use a condensed transaction-
wait-for graph (TWFG) in which the vertices represent
transactions and edges indicate dependencies between
transactions. This algorithm can fail to detect some
deadlocks and may discover false deadlocks.

E. Ho’s Algorithm [12]
According to this [12] approach, the transaction table at

each site maintains information regarding resources held
and waited on by local transactions. The resources table at
each of the sites maintains information regarding the
transactions holding and waiting for local resources.
Periodically, a site is chosen as a central controller
responsible for performing deadlock detection. The
drawback of this scheme is that it requires 4n messages,
where n is the number of sites in the system.

F. Kawazu’s Algorithm [13]
 The algorithm is based on two phases. In the first phase

local deadlocks are detected, and in the second phase global
deadlocks are detected in the absence of local deadlocks.
This scheme suffers from phantom deadlocks, because each

4747

local wait-for graph is not collected at the same time due to
communication delays. Also, in case a transaction
simultaneously waits for more than one resource, some
global deadlocks may go undetected since the global
deadlock detection is initiated only if no local deadlock is
detected. Also Bracha’s [14], Mitchell’s [15] and
Krivokapic’s [1] algorithms have been described to detect
deadlock in distributed database.

V. CONCLUSION AND FUTURE WORK
The deadlock problem involves a circular waiting where one
or more transactions are waiting for resources to become an
available and those resources are held by some other
transactions that are in turn blocked until resources held by
the first transaction or transactions are released. We
presented an approach to detect both local deadlocks and
global deadlocks in [19]. The technique uses TQ
(Transaction queue) to store the priority id for all
transactions which are in local deadlock cycles or in global
deadlock cycles. Based on the priority id, the youngest
transactions are aborted to free, the system from deadlock
cycles. As a result, some crucial requests from the
transactions can be expelled from the system because of the
abortion of youngest victim pair. Therefore the transactions
which are really responsible for the creation of major
deadlock cycles may remain in the system. To handle this
problem, this paper describes a technique to optimize the
detected deadlock.

In a DBMS, deadlock resolution means that one or more
of the participating transactions, the victim, is chosen to be
aborted, thereby resolving the deadlock [3]. But when more
than one deadlock cycle is involved in any distributed site or
among the sites, it is required to optimize the request of the
transactions which are involved for the cause of the major
deadlock cycles. Handling deadlock involves two problems:
deadlock detection and deadlock resolution. A deadlock
detection algorithm or technique is correct if it satisfies two
conditions: (1) every deadlock is eventually detected, and (2)
every detected deadlock really exists, i.e., only genuine
deadlocks are detected. Our proposed optimization technique
also maintains these major features whilst minimizing the
detected deadlock cycles.

REFERENCES

[1] P. Valduriez and T. Ozsu, "Principle of Distributed Database
Systems.," Prentice Hall, 1999.

[2] A. K. Elmagarmid, "A Survey Of Distributed Deadlock Detection
Algorithms," Sigmod vol. 15: 3, pp. 37-45, 1986.

[3] N. Krivokapi, A. Kemper, and E. Gudes, "Deadlock Detection in
Distributed Database Systems: A new algorithm and a comparitive
performance analysis " VLDB Journal vol. 8, pp. 79-100, 1999.

[4] A. N. Choudhary, "Cost of Distributed Deadlock Detection: A
performance Study," in IEEE, 1990.

[5] P. A. Bernstein and N. Goodman, "Concurrency Control in
Distributed Database Systems," ACM, vol. 13:2, pp. 186-221, 1981.

[6] H. T. Kung and J. T. Robinson, "Optimistic Methods for Concurrency
Control," ACM Transaction on Database Systems, vol. 6, pp. 213-
226, 1981.

[7] J. N. Gray, "A discussion on distributed systems," IBM Research
Division, 1979.

[8] G. Alkhatib and R. S. Labban, "Transaction Management in
Distributed Database Systems: the Case of Oracle Two-Phase
Commit," The Journal of Information Systems Education, vol. 13:2,
pp. 95-103, 1995.

[9] K. M. Chandy, J. Misra, and L. M. Hass, "Distributed Deadlock
Detection," ACM Transaction on Computer Systems, vol. 1:2, pp.
144-56, 1983.

[10] X. M. Chandy and J. Misra, "A Distributed Algorithm for Detecting
Resource Deadlocks in Distributed Systems " in ACM, 1982.

[11] G. S. HO and C. V. RAMAMOORTHY, "Protocols for Deadlock
Detection in Distributed Database Systems " IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING,, vol. 8:6, pp. 554-557, 1982.

[12] S. Kawazu, S. Minami, K. Itoh, and K. Teranaka, "Two-Phase
Deadlock Detection Algorithm in Distributed Databases " in IEEE,
1979.

[13] D. P. Mitchell and M. J. Merritt, "A Distributed Algorithm for
Deadlock Detection and Resolution," in ACM, 1984.

[14] J. Nummenmaa, "Distributed Deadlock Management," in
http://www.cs.uta.fi/~jyrki/ds01, 2002.

[15] R. Obermarck, "Distributed Deadlock Detection Algorithm," ACM
Transaction on Database Systems, vol. 7:2, pp. 187-208, 1982.

[16] A. G. Olson and B. L. Evans, "Deadlock Detection For Distributed
Process Networks," in ICASSP, 2005, pp. 73-76.

[17] M. K. Sinha and N. Natarjan, "A Priority Based Distributed Deadlock
Detection Algorithm " IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, vol. 11:1, pp. 67-80, 1985.

[18] H. Wu, W.-N. Chin, and J. Jaffar, "An Efficient Distributed Deadlock
Avoidance Algorithm for the AND Model," IEEE Transactions on
Software Engineering, vol. 28:1, pp. 18-29, 2002.

[19] B. M. M. Alom, F. Henskens, and M. Hannaford, "Deadlock
Detection Views of Distributed Database," in International
conference on Information Technology & New Generartion (ITNG-
2009) Las Vegas, USA: IEEE Computer Society, 2009.

[20] D. A. Menasce and R. R. Muntz, "Locking and Deadlock Detection in
Distributed Data Bases " IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, vol. 5:3, pp. 195-202, 1979.

[21] S. Bhalla and M. Hasegawa, "Automatic Detection of Multi-Level
Deadlocks in Distributed Transaction Management Systems," in
International Conference on Parallel Processing Workshops
(ICPPW): IEEE, Computer Society, 2003.

[22] G. Bracha and S. Toueg, "Distributed Algorithm for Generalized
Deadlock Detection," in ACM Symposium on Principles of
Distributed Computing, 1984.

[23] N. Farajzadeh, M. Hashemzadeh, M. Mousakhani, and A. T.
Haghighat, "An Efficient Generalized Deadlock Detection and
Resolution Algorithm in Distributed Systems," in International
Conference on Computer and Information Technology, 2005.

4848

