
 

  
Abstract—The authors have previously described an approach 

for medical diagnostic reasoning based on the ST (Select and 
Test) model introduced by Ramoni and Stefanelli et al. This 
paper extends the previous approach by introducing the 
required algorithm for medical expert system development. The 
algorithm involves a bottom-up and recursive process using 
logical inferences, abduction, deduction, and induction. 
Pseudocode for the algorithm, and the data structures involved, 
are described, and the algorithm’s implementation using a small 
sample knowledgebase and programmed in Java is included in 
appendixes. Implementation of a successful expert system is a 
challenging process; development of the necessary algorithm for 
its inference engine, and definition                                                                      
of a knowledgebase structure that models expert diagnostic 
reasoning and knowledge, only fulfils the initial step. Challenges 
associated with the remaining steps of the development process 
can be identified and dealt with using the CLAP software process 
model. 
 

Index Terms—Medical diagnostic Reasoning, Medical Expert 
Systems, ST model. 
 

I. INTRODUCTION 
ealisation of medical expert systems has been one of the 
earliest goals of the AI community. Unfortunately, 

attempts by major projects such as INTERNIST -I and 
CADUCEUS have not been successful [1]. 

One of the reasons for this failure can be understood in 
relation to the lack of models that capture the depth and 
complexity of expert medical diagnostic reasoning. Models 
previously proposed for medical diagnostic reasoning include: 
scheme-inductive reasoning [2]; hypothetico-deductive 
reasoning [3]; backward and forward reasoning [4]; pattern 
recognition [5]; Parsimonious Covering Theory [6]; 
Information Processing Approach [7]; Process Model for 
diagnostic reasoning [8]; Certainty Factor model [9]; models 
based on Bayes Theorem [10-12]; and models based on Fuzzy 
logic [13-15]. The authors have previously described the 
limitations of some of these approaches, and proposed an 
approximate reasoning model for medical diagnostic 
reasoning [16]. This previously proposed model was based on 
 

Manuscript received August 7, 2013. 
D. A. I. P. Fernando is with the School of Electrical Engineering & 

Computer Science, University of Newcastle, NSW 2308, Australia (phone: 
+61 423 281 664; e-mail: irosh.fernando@uon.edu.au).  

F. A. Henskens is with the School of Electrical Engineering & Computer 
Science, University of Newcastle, NSW 2308, Australia (e-mail: 
frans.henskens@newcastle.edu.au).  

the epistemological framework (also known as Select and Test 
(ST) model) for medical diagnostic reasoning proposed by 
Ramoni and Stefanelli et al [17]. 

This paper complements the authors’ previous approach by 
introducing the required algorithm for diagnostic inference. 
The previously proposed reasoning model requires of at least 
three layers of knowledgebase entities, namely diagnoses, 
symptoms and symptom attributes, together with 
mathematical functions to quantify those entities. In order to 
improve readability, the algorithm described in this paper has 
been deliberately simplified by restricting its application to 
the first two layers only. Extension of the algorithm to 
incorporate the full model is explained in the Discussion 
section of this paper. 

The remainder of the paper begins with an introduction to 
the ST Model followed by formalisation of the 
knowledgebase as a graph consisting of symptoms and 
diagnoses. Then, the algorithm’s pseudocode and the data 
structures, and its implementation, are described using a 
sample knowledgebase. Before the paper is concluded, other 
challenges that are faced in developing successful medical 
expert systems are briefly outlined, and the CLAP software 
process model [18] is described as a framework for addressing 
these challenges in a systematic manner. 

 

II. SELECT AND TEST (ST) MODEL 
The ST Model describes a cyclical process (Fig. 1), which 

uses the logical inferences, abduction, deduction, and 
induction that were described by Charles Peirce [19]. Usually, 
diagnostic reasoning in clinical contexts begins when a patient 
reports a symptom or symptoms to their clinician. Whilst 
these symptoms are well-defined entities in the clinician’s 
mind, patients may use various descriptive terms to describe 
their symptoms. For example, a patient may use the 
descriptive term ‘a dark cloud over me’ to describe the 
symptom ‘low mood’. The process of mapping these 
descriptive terms understood by patients onto well-defined 
symptom entities used in the knowledgebase is known as 
abstraction. The next step, known as abduction, involves 
determining all likely diagnoses related to the reported 
symptoms. Then, for each likely diagnosis, it is necessary to 
determine if the patient is experiencing other expected 
symptoms. This is known as deduction. These three steps 
repeat cyclically until all the required symptoms and 
diagnoses have been explored. Once this cycle is ended, the 
final step, induction, occurs. Induction involves matching the 

ST Algorithm for Medical Diagnostic 
Reasoning 

Irosh Fernando and Frans A. Henskens 

R 

23 Polibits (48) 2013ISSN 1870-9044; pp. 23–29

 P
RE-P

UBLIC
ATIO

N D
RAFT.

PAGE N
UM

BERS M
AY C

HANGE

    
    

 IN
 T

HE F
IN

AL V
ERSIO

N



 

elicited symptoms with the expected symptoms for each likely 
diagnosis, thus determining whether or not the patient is 
suffering from any of the likely diagnoses. More details of the 
ST model can be found in the paper published by Ramoni and 
Stefanelli et al [17]. 

 

 
 
Fig. 1.  The ST Model. 
 

III. FORMAL MODEL FOR KNOWLEDGEBASE 
By way of formalising the process described above, let us 

represent all the diagnoses and symptoms in our 
knowledgebase as sets D={d1,d2,…,dn} and S={s1,s2,…2m} 
respectively. The relationship representing ‘given a symptom 
si how likely is diagnosis dj’ is represented as a two-layer 
graph (Fig. 2), in which each arc is associated with a value θij 
representing the likelihood (L) that si implies dj; note 0≤θij≤1. 
This can also be represented using the notation L(dj | si) = θij. 
By way of example, in Fig.2 the arc connecting d1 and s3 
would have associated likelihood θ31. The knowledgebase 
consisting of the two layers, symptoms and diagnoses, can be 
represented as a matrix [θij]. 

 

 
 
Fig. 2. Simplified knowledgebase representing diagnoses and symptoms only. 

 

IV. SELECT AND TEST ALGORITHM 
Medical diagnostic reasoning involves two main steps:  

1. search for symptoms 

2. arrive at diagnoses based on the symptoms found 
in the previous step.  

Because of the vastness of the knowledgebase, one of the 
most challenging aspects of diagnostic reasoning is the 

symptom search process. It is therefore not uncommon that 
even an experienced clinician can at times miss a diagnosis 
because of failure to elicit a key symptom that would have 
provided an important clue to a diagnosis. If all the symptoms 
are known, arriving at a diagnosis is relatively easy 
computationally, depending on the commonly agreed or 
established diagnostic criteria used in different medical 
specialities. For example, in psychiatry, if all the symptoms 
are known, the second step involves matching the elicited 
symptoms with the diagnostic criteria described in a standard 
diagnostic manual such as DSM-V [20]. In the ST algorithm, 
abstraction, abduction and deduction are involved in the first 
step, and induction is involved in the second step. 

The proposed algorithm uses five dynamic data structures, 
namely symptomsFound, symptomsToBeElicited, 
symptomsAlreadyElicited, diagnosesToBeElicited and 
diagnosesAlreadyElicited, which are implemented as linked 
lists. Also, in order to describe how the algorithm works, a 
static data structure patientProfile, which an artificial entity 
that encapsulates all the symptoms actually present in a 
patient, is used. The nature of the real world diagnostic 
problem is that the symptoms a patient actually has are 
initially unknown to the clinician. Symptom searching (the 
first step) in real world diagnostic reasoning can be 
conceptualised as an endeavour to find all the content, or at 
least all the clinically important symptoms, stored in 
patientProfile. In real world situations patientProfile is a 
virtual entity because it represents the patient’s actual 
symptoms, which need to be discovered by the clinician when 
the patient is interviewed. 

Details of the abstraction step have also been simplified in 
this paper. Whilst, in the real world setting, abstraction 
involves mapping the patient’s symptom descriptions to 
defined knowledgebase entities, this largely mechanical 
matching process is omitted. Rather, it is assumed that the 
symptom descriptions stored in patientProfile correspond to 
the symptom descriptions used in the knowledgebase.   

 

 
 
Fig. 3. Data structures used in the ST algorithm. 
 

Implementation of abstraction in a real world application 
would require, for example, the patient informing symptoms 

24Polibits (48) 2013 ISSN 1870-9044

Irosh Fernando, Frans A. Henskens

 P
RE-P

UBLIC
ATIO

N D
RAFT.

PAGE N
UM

BERS M
AY C

HANGE

    
    

 IN
 T

HE F
IN

AL V
ERSIO

N



 

by answering closed-ended questions using check boxes in a 
very basic human computer interface, or via an actual dialog 
between patient and expert system using natural language 
capabilities. 

The data structures used in a computer-based 
implementation of the algorithm are described in Fig. 3, and 
the algorithm itself is shown in Fig. 4. 

 

 
Fig. 4. ST algorithm. 

 
The ST Algorithm starts when a patient reports a set of 

initial symptoms that are stored in symptomsFound and 
diagnosesAlreadyElicited. 

Abduction then begins, returning all the diagnoses 
connected to each symptom stored in symptomsFound. A 
threshold value likelihoodThreshold in relation to the 
connection strength between any symptom and related 
diagnosis can be used to determine which diagnoses are to be 
retrieved. Accordingly, for any given symptom si the system 
will retrieve all the diagnoses dj for which the likelihood that 
the symptom is caused by the diagnosis is in accordance with 
θij > likelihoodThreshold. 

These diagnoses are stored in the linked list 
diagnosesToBeElicited; before storing each diagnosis the 
system checks if it has already been stored in 
diagnosesAlreadyElicited because of association with a 
previous symptom, thus avoiding the possibility of duplicate 
diagnoses. 

Next, deduction begins by returning all the expected 
symptoms connected with each diagnosis stored in 
diagnosesToBeElicited, after which the diagnosis is 
removed from diagnosesToBeElicited and transferred into 
diagnosesAlreadyElicited. All the expected symptoms that 
are returned for each diagnosis are transferred into 
diagnosesToBeElicited unless they are already stored in 
diagnosesAlreadyElicited. 

Abstraction then commences, eliciting each symptom 
stored in symptomsToBeElicited by searching 
patientProfile. Then the elicited symptom is removed from 
symptomsToBeElicited and transferred into 
symptomsAlreadyElicited . If the elicited symptom is found 
in patientProfile it is stored in symptomsFound. 

Finally, induction involves matching diagnostic criteria 
(i.e. symptoms expected for each diagnosis in 
diagnosesAlreadyElicited) with the symptoms stored in 
symptomsFound. If the diagnostic criteria are met, 
depending on the expected symptoms and the symptoms in 
symptomsFound then the respective diagnosis is accepted.  
Otherwise the respective diagnosis is excluded. 

 

V. AN EXAMPLE AND ITS IMPLEMENTATION 
In order to elaborate the proposed algorithm, let us 

consider a small knowledge base consisting of twelve 
symptoms and six diagnoses as described in Fig. 5. The 
relationships between these diagnoses and symptoms (i.e. θij 
as described previously) are described in the matrix shown in 
Fig. 6 as a table. Java implementations of this knowledgebase 
and the algorithm are presented in Appendix 1 and Appendix 
2 respectively. 

 

25 Polibits (48) 2013ISSN 1870-9044

ST Algorithm for Medical Diagnostic Reasoning

 P
RE-P

UBLIC
ATIO

N D
RAFT.

PAGE N
UM

BERS M
AY C

HANGE

    
    

 IN
 T

HE F
IN

AL V
ERSIO

N



 

 
 
Fig. 5. Symptoms and diagnoses to be included in sample knowledgebase. 
 

Details of the induction step are omitted in the 
implementation; the implementation of this step depends on 
the diagnostic criteria that are used to match the elicited 
symptoms with the expected symptoms of diagnoses. In its 
simplest form, the induction step can be implemented by one 
to one matching of the expected symptoms with the elicited 
symptoms. Nonetheless, depending on the diagnosis, it may 
not be necessary to have all the expected symptoms to make 
that diagnosis. In such situations, logical expression 
constructed using AND and OR operators can be used to 
formulate diagnostic rules by connecting different 
combination of symptoms. These diagnostic rules can be 
enhanced by allowing quantification of the severity of the 
symptoms elicited in the patient, as described elsewhere [16]. 

 

 
 
Fig. 6. Representation of the knowledgebase as a matrix, [θij]. 
 

For example, consider the diagnosis d1 = Major 
Depression, s1 = Depressed Mood, and the related 
symptoms s1 = Depressed Mood, s2 = Loss of Motivation, 
s3 = Weight Loss, and s7 = Low Self Esteem. 

Suppose we have a patient who presents with the above 
symptoms, each with a different level of severity. Let us 
assume that the severity of these symptoms (i.e. 
quantification) corresponds to q1, q2, q3 and q7 respectively.  
Using threshold values t11, t12, t13 and t17 respectively for each 
of these symptoms in relation to d1, an example of a 
diagnostic rule is as follows: 

 
IF(q1>t11 AND q2>t12 AND q3>t13 AND q7>t17) THEN 
                                                      accepted(d1) = TRUE 

 

accepted(d1) indicates whether the diagnostic criteria for 
d1 is met, resulting in its acceptance (or rejection) as a 
diagnosis. It may require several such diagnostic rules for 
each diagnosis, and some of the rules may also require the 
logical operator OR in addition to AND. Developers may 
have to consult standard diagnostic manuals (for example, 
DSM V [20] in psychiatry) when formulating the diagnostic 
rules. 

 

VI. DISCUSSION 
The knowledgebase model and algorithm presented above 

represent a simplified version of what it is required for 
effective diagnostic inference in real world settings. 
Nonetheless, they encapsulate the essential basic 
characteristics of the reasoning process. This basic structure 
can be extended and customised according to the 
characteristics of clinical knowledge in various medical 
subspecialties (i.e. subdomains). For example, in psychiatry, 
the knowledgebase may require addition of an extra layer 
known as clinical phenomenon between the symptoms and 
diagnoses layers [21]. Also, an extra layer of symptom 
attributes can be added below the symptoms layer, and each 
symptom can be quantified using the values associated with 
the related symptom’s attributes using mathematical functions 
that approximate their relationships, as described elsewhere 
[16]. 

In addition to searching for diagnoses related to a given 
symptom based on likelihood, as described in the algorithm, 
diagnostic reasoning in the real world setting also involves 
searching for more critical (i.e. associated with relatively 
worse consequences if undetected) diagnoses even though 
their likelihoods seem low based on the patient’s reported 
symptoms. The ST algorithm does an exhaustive search, and 
therefore can be useful in ruling out more critical diagnoses 
that can present with rather atypical symptoms. It is possible 
to enhance ST by introducing a critical value δj associated 
with each diagnosis dj  that determines the level of criticality 
of the diagnosis. Similarly to the likelihoodThreshold 
described previously, a threshold value criticalityThreshold 
can be used to select diagnoses for which 
δj>criticalityThreshold. 

The next significant challenge to implementing the 
algorithm in a practically useful expert system is developing 
and maintaining a sufficiently large knowledgebase. Because 
of the vastness of the knowledgebase and the amount of 
manpower and commitment required to develop and maintain 
it, a sufficient database has been very difficult to achieve 
using traditional development methods [22]. For example, 
despite expending nearly 25-30 person years of work, it has 
still not been able to complete the knowledgebase of 
INTERNIST-I, an expert diagnostic system in Internal 
Medicine [1]. 

Even if the required knowledgebase were implemented, 
there are yet more challenges. An important challenge is 
engaging clinicians, who may often feel threatened by 
medical expert systems on the grounds they may be intended 
to duplicate and replace some of their skills [23]. The authors 
have previously discussed these challenges, and introduced a 

26Polibits (48) 2013 ISSN 1870-9044

Irosh Fernando, Frans A. Henskens

 P
RE-P

UBLIC
ATIO

N D
RAFT.

PAGE N
UM

BERS M
AY C

HANGE

    
    

 IN
 T

HE F
IN

AL V
ERSIO

N



 

software process model known as a Collaborative and 
Layered Approach (CLAP) as a strategy to deal with these 
challenging issues [18].  

The main layers and the activities within each layer of 
CLAP are shown in Fig. 7, and the reader is encouraged to 
refer to the main paper on this model for more details [18]. 
The form of ST algorithm introduced in this paper can be 
considered as the main product of the conceptual layer, which 
primarily deals with conceptualising the expert medical 
reasoning process and the knowledgebase, and then 
translating into a formal model. The societal layer then deals 
with engaging clinicians in a collaborative development 
process, and defining the role of the under-development 
expert system within the complex modern day organisational 
structure of healthcare services in which it will be used. 
Finally, the computational layer deals with software and 
hardware implementation of the expert system. As an 
important strategy to overcome the difficulty of developing 
and maintaining the knowledgebase, the CLAP model 
suggests use of an online collaborative approach [24], which 
can be realised due to advancement of Internet-based social 
networking platforms. 

 

VII. CONCLUSION 
Whilst acknowledging the challenges in developing 

successful medical expert systems, this paper introduced a 
simplified version of the algorithm and data structures 
required for implementing an inference engine and 
knowledgebase, based on a previously introduced diagnostic 
reasoning model [16]. Even though there are many diagnostic 
reasoning models that have been previously introduced, the 
authors claim that the reasoning model on which the 
algorithm introduced in ST this paper is designed, is more 
comprehensive in relation to the overall expert diagnostic 
reasoning process. Furthermore, the algorithm closely models 
the recursive steps that are involved in real world diagnostic 
reasoning, using logical inferences. Because of the complexity 
and the space required to describe the full algorithm and its 
implementation, it was necessary in this paper to simplify the 
algorithm and knowledgebase described. However, the paper 
still provides the core structure on which, the full model can 
be built. As a means to identifying and resolving other 
challenges associated with the development process, the 
authors suggest use of the CLAP software process model for 
developing medical expert systems [18]. 

APPENDIX 
Appendix 1. Java representation of the knowledgebase. 
	
  
package  diagnosticalgorithm;  
  
import  java.util.ArrayList;  
  
/**  
  *  
  *  @author  Irosh  Fernando  
  */  
public   c lass  Knowledgebase  {  
          
        //Declare  one  dimensional  array  of  symptoms    

          static   String  symptoms[]=  {  
                "Depressed  mood",            /*  1  */  
                "Loss  of  motivation",    /*  2  */  
                "Weight  loss",                  /*  3  */  
                "Fatigue"    ,                      /*  4  */  
                "Chest  discomfort",        /*  5  */  
                "Worrying  thoughts",      /*  6  */  
                "Low  self-­‐esteem",          /*  7  */  
                "Headache",                        /*  8  */  
                "Loss  of  appetite",        /*  9  */        
                "Hand  tremors",                /*  10  */              
                "Hypertension",                /*  11  */  
                "Dizzinesse"                      /*  12  */  
            };            
        
          //Declare  one  dimensional  array  of  diagnoses    
          static   String  diagnoses[]=  {  
                "Major  Depression",                          /*  1  */  
                "Generalised  Anxiety  Disorder",  /*  2  */  
                "Hyperthyroidism",                            /*  3  */  
                "Paechromocytoma",                            /*  4  */  
                "Anaemia",                                            /*  5  */  
                "Ischaemic  Heart  Disease",            /*  6  */  
            };                    
        
  
    //Declare  the  knowledgebase  as  a  two  dimensional  array      
        
        static   double  diag_symp[][]={  
                    /*  symptoms  index:    1,          2,          3,        4,          5,        6,          7,          8,          9,        10,      11,      
12    */  
      /*  diagnosis  index:  1  */      {  0.9,  0.9,  0.6,  0.6,  0.0,  0.0,  0.6,  0.0,  0.7,  0.0,  0.0,  
0.0    },    
      /*  diagnosis  index:  2  */      {  0.0,  0.0,  0.0,  0.7,  0.6,  0.9,  0.4,  0.6,  0.0,  0.6,  0.0,  
0.4  },    
      /*  diagnosis  index:  3  */      {  0.3,  0.0,  0.7,  0.6,  0.0,  0.0,  0.0,  0.0,  0.0,  0.8,  0.0,  
0.3  },    
      /*  diagnosis  index:  4  */      {  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.5,  0.0,  0.0,  0.9,  
0.0  },    
      /*  diagnosis  index:  5  */      {  0.0,  0.3,  0.0,  0.8,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  
0.6  },    
      /*  diagnosis  index:  6  */      {  0.3,  0.0,  0.0,  0.3,  0.8,  0.0,  0.0,  0.0,  0.0,  0.0,  0.4,  
0.6  },          
      };  
        
          
        //  return  the  index  of  a  given  symptom  
        static   public   int  getSymptomIndex(String  symptom){  
                //  return  -­‐1  if  not  found  
                int   index=-­‐1;  
                for(  int  i=0;  i<symptoms.length;  i++){  
                        i f (  symptoms[i].equalsIgnoreCase(symptom))  
                                        index=i;          
                }  
                return  index;  
        }  
          
      //  return  the  index  of  a  given  diagnosis  
        static   public   int  getDiagnosisIndex(String  diagnosis){  
              //  return  -­‐1  if  not  found  
                int   index=-­‐1;  
                for(  int  i=0;  i<diagnoses.length;  i++){  
                        i f (  diagnoses[i].equalsIgnoreCase(diagnosis))  
                                        index=i;          
                }  
                return  index;  
        }  
          
        //  return  all  diagnoses  related  a  given  symptom  above  a  given  threshold  
        static   public   ArrayList  getDiagnoses(String  symptom,  double  threshold){  

27 Polibits (48) 2013ISSN 1870-9044

ST Algorithm for Medical Diagnostic Reasoning

 P
RE-P

UBLIC
ATIO

N D
RAFT.

PAGE N
UM

BERS M
AY C

HANGE

    
    

 IN
 T

HE F
IN

AL V
ERSIO

N



 

                ArrayList<String>  diagnosesList  =  new  ArrayList<>();  
                int   index=  getSymptomIndex(symptom);  
                for(  int  i=0;  i<  diagnoses.length;  i++){  
                        i f (diag_symp[i][index]>  threshold  )  
                                diagnosesList.add(diagnoses[i]);  
                }  
                return  diagnosesList;  
        }  
      
          
          //  return  all  symptoms  related  a  given  diagnosis  above  a  given  threshold  
        static   public   ArrayList  getSymptoms(String  diagnosis,  double  threshold){  
                ArrayList<String>  symptomList  =  new  ArrayList<>();  
                int   index=  getDiagnosisIndex(diagnosis);  
                for(  int  i=0;  i<  symptoms.length;  i++){  
                        i f (diag_symp[index][i]>  threshold  )  
                                symptomList.add(symptoms[i]);  
                }  
                return  symptomList;  
        }        
        
}  
  
Appendix  2.  Java  representation  of  the  algorithm.  
  
package  diagnosticalgorithm;  
  
import  java.util.ArrayList;  
  
import  java.util.List;  
  
/**  
  *  
  *  @author  Irosh  Fernando  
  *  @Date  30th  of  June  2013  
  */  
public   c lass  STAlgorithm  {  
        static   Knowledgebase  KB;  
        static   PatientProfiles  Patient;  
          
        static   List<String>  symptomsFound  =  new  ArrayList<>();  
        static   List<String>  symptomsToBeElicited  =  new  ArrayList<>();  
          
        //  To  store  both  symptoms  found  and  not  found    
        static   List<String>  symptomsAlreadyElicited  =  new  ArrayList<>();  
          
              
        //  store  diagnose  of  which  symptoms  are  to  be  explored  
        static   List<String>  diagnosesToBeElicited  =  new  ArrayList<>();  
                  
        //  Store  diagnoses  of  which  symptoms  have  already  been  explored    
        static   List<String>  diagnosesAlreadyElicited  =  new  ArrayList<>();  
          
        //  set  the  likelihood  threshold  
        static   double  likelihoodThreshold=0.5;      
          
        //  Initialise  the  symptoms  reported  by  patient  at  the  beginning  
        static   private  void  initialise(){  
                symptomsFound.add("Depressed  Mood");  
                symptomsAlreadyElicited.add("Depressed  Mood");  
                //...add  more  symptoms  as  necessary  
}  
          
//  Abduction  
        static   private  void  doAbduction(){  
                for(int  i=0;  i<symptomsFound.size();i++){  
                        ArrayList<String>  diagList;    
                        diagList  =  KB.getDiagnoses(symptomsFound.get(i),  
likelihoodThreshold);  
                        //  insert  each  diagnosis  into  likelyDiagnoses  if  not  already  in  

                        for(int  j=0;  j<  diagList.size();j++){  
                                i f   (!diagnosesAlreadyElicited.contains(diagList.get(j))  )  
                                        diagnosesToBeElicited.add(diagList.get(j));  
                        }  
                        doDeduction();  
                        doAbstraction();  
                
                }  
    
        }        
          
        //  Deduction  
        static   private  void  doDeduction(){  
                for(int  i=0;  i<diagnosesToBeElicited.size();i++){  
                        ArrayList<String>  sympList;    
                        sympList  =  KB.getSymptoms(diagnosesToBeElicited.get(i),  
likelihoodThreshold);  
//  insert  each  expected  symptom  into  symptomsToBeElicited  if  not  already  in  
                        for(int  j=0;  j<  sympList.size();j++){  
                                i f   (!symptomsAlreadyElicited.contains(sympList.get(j)))  
                                        symptomsToBeElicited.add(sympList.get(j));  
                        }  
                        //  store  alrady  found  symptoms  in  symptomsAlreadyElicited  
                        diagnosesAlreadyElicited.add(diagnosesToBeElicited.get(i));  
                }  
                //  Empty  the  diagnosesToBeElicited  after  eliciting  all  the  diagnoses  
                diagnosesToBeElicited.clear();  
        }  
          
          
        //  Abstraction  
        static   private  void  doAbstraction(){  
                for(int  i=0;  i<symptomsToBeElicited.size();i++){  
                                          
    i f (!symptomsAlreadyElicited.contains(symptomsToBeElicited.get(i))  ){  
                                i f (Patient.symptomPresent(symptomsToBeElicited.get(i))){  
                                            symptomsFound.add(symptomsToBeElicited.get(i));  
                                  }    
                                    
      symptomsAlreadyElicited.add(symptomsToBeElicited.get(i));            
                        }  
                            
        }  
  //  Empty  the  symptomsToBeElicited  after  eliciting  all  the  expected  symptoms  
        symptomsToBeElicited.clear();  
}  

 

REFERENCES 
[1] D. A. Wolfram, "An appraisal of INTERNIST-I," Artificial 

Intelligence in Medicine, vol. 7, pp. 93-116, 1995. 
[2] H. Mandin, A. Jones, W. Woloschuk, and P. Harasym, "Helping 

students learn to think like experts when solving clinical 
problems," Academic Medicine, vol. 72, pp. 173-179, 1997. 

[3] A. S. Elstein, L. S. Shulman, and S. A. Sprafka, Medical Problem-
Solving: an Analysis of Clinical Reasoning: Cambridge, MA: 
Harvard University Press 1978. 

[4] E. Hunt, "Cognitive Science: Definition, Status, and Questions " 
Annual Review of psychology, vol. 40, pp. 603-629 1989. 

[5] G. R. Norman, C. L. Coblentz, L. R. Brooks, and C. J. Babcook, 
"Expertise in visual diagnosis - a review of the literature.," 
Academic Medicine, vol. 66(suppl), pp. s78-s83, 1992. 

[6] J. A. Reggia and Y. Peng, "Modeling diagnostic reasoning: a 
summary of parsimonious covering theory," Computer Methods 
and Programs in Biomedicine, vol. 25, pp. 125-134, 1987. 

[7] P. M. Wortman, "Medical Diagnosis: An Information-Processing 
Approach," Computers and Biomedical Research, vol. 5, pp. 315-
328, 1972. 

[8] J. Stausberg and M. Person, "A process model of diagnostic 
reasoning in medicine," International Journal of Medical 
Informatics, vol. 54, pp. 9-23, 1999. 

28Polibits (48) 2013 ISSN 1870-9044

Irosh Fernando, Frans A. Henskens

 P
RE-P

UBLIC
ATIO

N D
RAFT.

PAGE N
UM

BERS M
AY C

HANGE

    
    

 IN
 T

HE F
IN

AL V
ERSIO

N



 

[9] E. H. Shortliffe and B. G. Buchanan, "A model of inexact 
reasoning in medicine," Mathematical Biosciences, vol. 23, pp. 
351-379, 1975. 

[10] S. Andreassen, F. V. Jensen, and K. G. Olesen, "Medical expert 
systems based on causal probabilistic networks," International 
Journal of Bio-Medical Computing, vol. 28, pp. 1-30, 1991. 

[11] T. Chard and E. M. Rubenstein, "A model-based system to 
determine the relative value of different variables in a diagnostic 
system using Bayes theorem," International Journal of Bio-
Medical Computing, vol. 24, pp. 133-142, 1989. 

[12] B. S. Todd, R. Stamper, and P. Macpherson, "A probabilistic rule-
based expert system," International Journal of Bio-Medical 
Computing, vol. 33, pp. 129-148, 1993. 

[13] K. Boegl, K. P. Adlassnig, Y. Hayashi, T. E. Rothenfluh, and H. 
Leitich, "Knowledge acquisition in the fuzzy knowledge 
representation framework of a medical consultation system," 
Artificial Intelligence in Medicine, vol. 30, pp. 1-26, 2004. 

[14] L. Godo, R. L. de Mántaras, J. Puyol-Gruart, and C. Sierra, 
"Renoir, Pneumon-IA and Terap-IA: three medical applications 
based on fuzzy logic," Artificial Intelligence in Medicine, vol. 21, 
pp. 153-162, 2001. 

[15] T. Vetterlein and A. Ciabattoni, "On the (fuzzy) logical content of 
CADIAG-2," Fuzzy Sets and Systems, vol. 161, pp. 1941-1958, 
2010. 

[16] I. Fernando, F. Henskens, and M. Cohen, "An Approximate 
Reasoning Model for Medical Diagnosis," in Software 
Engineering, Artificial Intelligence, Networking and 
Parallel/Distributed Computing. vol. 492, R. Lee, Ed., ed: 
Springer International Publishing, 2013, pp. 11-24. 

[17] M. Ramoni, M. Stefanelli, L. Magnani, and G. Barosi, "An 
epistemological framework for medical knowledge-based systems 
" IEEE Transactions on Systems, Man and Cybernetics, vol. 22, 
pp. 1361-1375, 1992. 

[18] I. Fernando, F. Henskens, and M. Cohen, "A Collaborative and 
Layered Approach (CLAP) for Medical Expert System 
Development: A Software Process Model," in IEEE/ACIS 11th 
International Conference on Computer and Information Science 
(ICIS12), 2012, pp. 497-502. 

[19] C. S. Peirce, "Illustrations of the logic of science, sixth paper-
deduction, induction, hypothesis," The Popular Science Monthly, 
vol. 1, pp. 470-482, 1878. 

[20] American Psychiatric Association, Diagnostic and Statistical 
Manual of Mental Disorders: DSM-5: American Psychiatric 
Publishing Incorporated, 2013. 

[21] I. Fernando, M. Cohen, and F. Henskens, "A systematic approach 
to clinical reasoning in psychiatry," Australasian Psychiatry, vol. 
21, pp. 224-230, 2013. 

[22] E. L. Kinney, "Medical Expert Systems - Who needs them ?," 
CHEST, vol. 91, pp. 3-4, 1987. 

[23] A. K. Das, "Computers in Psychiatry: A Review of Past Programs 
and an Analysis of Historical Trends," Psychiatric Quarterly, vol. 
73, pp. 351-365, 2002. 

[24] D. Richards, "Collaborative Knowledge Engineering: Socialising 
Expert Systems," in 11th International Conference on Computer 
Supported Cooperative Work in Design, 2007. 

 
 

29 Polibits (48) 2013ISSN 1870-9044

ST Algorithm for Medical Diagnostic Reasoning

 P
RE-P

UBLIC
ATIO

N D
RAFT.

PAGE N
UM

BERS M
AY C

HANGE

    
    

 IN
 T

HE F
IN

AL V
ERSIO

N


