
Techniques for Improving Vision and Locomotion on the Sony AIBO Robot

Michael J. Quinlan, Stephan K. Chalup and Richard H. Middleton∗

School of Electrical Engineering & Computer Science
The University of Newcastle, Callaghan 2308, Australia

{mquinlan,chalup,rick}@eecs.newcastle.edu.au

Abstract

The restricted setting and uniformly prescribed
hardware of the Sony Legged League of RoboCup
provide an environment for testing algorithms on
autonomous robots with a view towards possible
applications in real world situations. In this study
we show how two techniques - Support Vector Ma-
chines and Hill Climbing - can be applied to prob-
lems faced by the robots in this league. We use Sup-
port Vector Machines to perform collision detection
and also to assist the process of color classification,
while a Hill Climbing algorithm is employed to im-
prove straight line walking speed through walk pa-
rameter optimisation.

1 Introduction

Sony AIBO robots are currently used in the Legged League
of RoboCup. The OPEN-R software libraries are designed for
use with modular robot architectures and are already becom-
ing a standard for a larger class of future robots[OPEN-R,
2003]. OPEN-R is free and the robots are available for pur-
chase in many countries and via the internet. However pro-
gramming the robots to perform certain tasks or show adap-
tive behavior remains a challenge even for experts. One rea-
son for this is their limited hardware capabilities.

Traditionally hard coding of expert knowledge and hand-
tuning of parameters have been preferred over the use of
learning algorithms on the robot. Application of the latter
is often restricted to simulations which are able to support
training or tuning of the real world robot parameters. How-
ever, often the gap between simulation and the real world is
very wide. This often renders the transfer of training results
from the simulated to the real robot useless.

In this article we report how we are able to improve the
robots’ performance with respect to colour classification, col-
lision detection and straight line walking speed using two
types of machine learning algorithm.

∗http://www.robots.newcastle.edu.au

2 Hardware and Environment
Before discussing the machine learning algorithms we briefly
review the hardware and environment for robot soccer.

2.1 Sony AIBO
The legged league in 2003 prescribed the use of Sony AIBO
entertainment robots (Figure 1), models ERS-210 or the
newer ERS-210A.

Both have an internal 64-bit RISC processor with clock
speeds of 192MHz and 384MHz, respectively. The robots
are programmed in a C++ software environment using the
Sony’s OPEN-R software development kit. The dimensions
of the robot (width× height× length) are 154 mm× 266
mm× 274 mm (not including the tail and ears) and the mass
is approximately 1.4 kg. The use of servos gives the robot 20
degrees of freedom (DOF): Neck 3DOF (pan, tilt, and roll),
Ear 1DOF x 2, Chin 1DOF, Legs 3DOF (Abductor, Rotator,
Knee) x 4 and Tail 2DOF (Up-Down, Left-Right).

Figure 1: Sony AIBOs on the RoboCup Legged League field.

2.2 RoboCup Legged League
Soccer matches take place on a green carpeted field with
internal dimensions of 270 cm× 420 cm, surrounded by
a 10 cm high sloped white wall. Localisation is aided by
six beacons uniquely identifiable by a specific colour pattern



which are placed around the field. Two goals, a blue and a
yellow, are positioned on opposite ends of the field. Currently
the ball used is orange plastic and of a suitable size to be eas-
ily moved around by the robots. The games consist of two ten
minute halves under rules imposed by independent referees.

3 Techniques and Tasks

In this section we will give a brief overview of the theory
behind Support Vector Machines (SVMs) and Hill Climbing.
We will show how we applied variations of these techniques
to the tasks of colour classification, collision detection and
walk parameter optimisation.

3.1 Support Vector Machines

The origins of the Support Vector Machine can be traced
to Vapnik’s work on Statistical Learning Theory[Vapnik
and Lerner, 1963; Vapnik, 1979; 1998]. It wasn’t until the
early 1990’s that it was further developed[Boseret al., 1992;
Cortes and Vapnik, 1995; Vapnik, 1995] and commonly em-
ployed for classification tasks such as handwriting or face
recognition.

The SVM was first developed for two-class classification,
the simplest version being known as a maximum margin clas-
sifier (Figure 2). This version only works on linearly separa-
ble data by selecting the hyperplane that separates the two
classes by the largest margin.

Figure 2: Maximal Margin Classifier: Separating hyperplane
where the shaded inputs are support vectors.

The training data is labelled{xi, yi}, i = 1, ..., `, yi ∈
{−1, 1}, xi ∈ Rn. If you consider the class of hyperplane

(w · x) + b = 0 w ∈ Rn, b ∈ R (1)

wherew is a weight vector andb a threshold, there exists a
unique optimal hyperplane with the maximum margin given
by

max
w,b

min{‖x− xi‖ : x ∈ Rn, (w · x) + b = 0}. (2)

To construct the optimal hyperplane one solves a con-
strained optimisation problem by introducing Lagrange mul-
tipliersαi ≥ 0 and a Lagrangian

L(w, b, α) =
1
2
‖w‖2 −

∑̀

i=1

αi(yi · ((xi ·w) + b)− 1). (3)

L has to be minimised with respect to theprimal variables
w andb and maximised with respect to the dual variablesαi.
The derivatives ofL with respect to these primal variables
leads to

∑̀

i=1

αiyi = 0 (4)

and

w =
∑̀

i=1

αiyixi (5)

Substituting (4) and (5) intoL gives us a dual problem,

max
∑̀

i=1

αi − 1
2

∑̀

i,j=1

αiαjyiyj(xi · xj) (6)

subject to

αi ≤ 0, i = 1, ..., `, and
∑̀

i=i

αiyi = 0.

This results in the following decision function for the hy-
perplane

f(x) = sgn(
∑̀

i=1

yiαi · (x · xi) + b) (7)

To build a non-linear SVM, one maps the input variable
into a high dimensional (possibly infinite) dot product feature
space that is hidden from both the input and the output. We
then construct an optimal hyperplane to separate the features
discovered in the feature space. Since (6) and (7) only re-
quire the evaluation of dot products, by replacingxi · xj with
a Mercer kernelk(xi, xj)=Φ(xi) · Φ(xj) the algorithm will
find a hyperplane in a high dimensional space with very little
impact on run time.

Some commonly used kernels arek(xi, xj) =

Radial Basis Function = e−γ‖xi−xj‖2

Polynomial = (xi · xj)d

We now get a generalised version of the decision in func-
tion (7)

f(x) = sgn(
∑̀

i=1

yiαi · k(x, xi) + b) (8)

2



Overlapping data (i.e. noisy data) can be handled by us-
ing a soft margin classifier, this is achieved by adding slack
variables. By solving with relaxed constraints a classifier can
be constructed that can allows you to maximise the capacity
while minimising the number of training errors.

Enhancements to the SVM algorithm allows for multi-class
classification along with one-class classification. The remain-
der of the paper focuses on a one-class SVM technique.

One-class SVM

An approach to one-class SVM classification was proposed
by Scḧolkpof et al. [Scḧolkopf et al., 2001]. Their strategy is
to map data into the feature space corresponding to the kernel
function and to separate them from the origin with maximum
margin. This implies the construction of a hyperplane such
thatw · Φ(xi) − b ≥ 0 (Figure 3). The result is a functionf

Figure 3: One-class SVM: The boundary produced by the
one-clss SVM contains only the input points.

that returns the value +1 in the region containing most of the
data points and -1 elsewhere. Assuming the use of an Radial
Basis Function (RBF) kernel whereν approximates the frac-
tion of outliers and support vectors andi, j ∈ {1, ..., `}, we
are presented with the dual problem:

min
α

1
2

∑

ij

αiαjk(xi, xj) (9)

subject to

0 ≤ αi ≤ 1
ν`

and
∑

i

αi = 1

b can be found by the fact that for any suchαi, a correspond-
ing patternxi satisfies:

b =
∑

j

αjk(xj , xi) (10)

The resulting decision functionf (the support of the distribu-
tion) is:

f(x) = sign(
∑

i

αik(xi, x)− b) (11)

An implementation of this approach is available in the LIB-
SVM library [Chang and Lin, 2001]. It solves a scaled ver-
sion of (9):

min
α

1
2

∑

ij

αiαjk(xi, xj) (12)

subject to

0 ≤ αi ≤ 1 and
∑

i

αi = ν`

For our applications we use a RBF kernel with parameterγ

in the formk(xi, xj) = e−γ‖xi−xj‖2 .

Colour Classification
The vision system for most teams consists of four main tasks,
Colour Classification, Run Length Encoding, Blob Formation
andObject Recognition

The classification process takes the image from the cam-
era in a YUV bitmap format[Shapiro and Stockman, 2001].
Each pixel in the image is assigned a colour label (i.e. ball
orange, beacon pink etc.) based on its YUV values. A lookup
table (LUT) is used to determine which YUV values corre-
spond to which colour labels. The critical stage is the initial
generation of the LUT. Since the robot is extremely reliant
on colour for object detection a new LUT has to be gener-
ated with any change in lighting conditions. Currently this
is a manual task which requires a human to take hundreds of
images and assign a colour label on a pixel-by-pixel basis.
Using this method each LUT can take hours to create, yet it
will still contain holes and classification errors.

The classification functions we seek take data that
has been manually clustered to produce setsXk ={
xk

i ∈ R3; i = 1, ..., Nk

}
of colour space data for each ob-

ject colourk. EachXk corresponds to sets of colour values
in the YUV space corresponding to one of the known colour
labels.

The previous method involved converting the existing LUT
values from YUV to the HSI colour space[Shapiro and
Stockman, 2001] and fitting an ellipsoid,E, which can be
represented by the quadratic form:

E (x0, Q) =
{

x ∈ R3 : (x− x0)
T

Q−1 (x− x0) ≤ 1
}

(13)
wherex0 is the centre of the ellipsoid, and the size, orienta-
tion and shape of the ellipsoid are contained in the positive
definite symmetric matrixQ = QT > 0 ∈ R3×3.

Note that this definition of the shape can be alternatively
represented by the linear matrix inequality (LMI):

xi ∈ E =
[

Q (xi − x0)
(xi − x0)

T 1

]
≥ 0 (14)

The LMI (14) is linear in the unknownsQ andx0 and this
therefore leads to the convex optimisation:

3



(Q, x0) = argmin
Q = QT > 0, x0 :

(14) is true fori = 1..Nk

{tr(Q)} (15)

Note that minimising the trace of Q (tr(Q)) is the same as
minimising the sum of the diagonal elements of Q which is
the same as minimising the sum of the squares of the lengths
of the principal axes of the ellipsoid. The ellipsoidal shape
defined in (13) has the disadvantage of restricting the shape
of possible regions in the colour space. However, it does have
the advantage of having a simple representation and a convex
shape.

Before the ellipsoid can be fitted, potential outliers and du-
plicate points were identified and removed. The removal of
outliers is important in avoiding too large a region. Dupli-
cate points were removed, since these increase computations
without adding any information.

In the new solution an individual one-class SVM is created
for each colour, withXk being used as the training data (each
element in the set is scaled between -1 and 1). By training
with an extremely lowν and a largeγ the boundary formed
by the decision function approximates the region that con-
tains the majority (1-ν) of the points inXk. In addition the
SVM has the advantage of simultaneously removing the out-
liers that occur during manual classification.

The new colour set is constructed by attempting to clas-
sify every point in the YUV space(643 elements). All points
that return a value of +1 are inside the region and therefore
deemed to be of colourk. Constructing an independent SVM
for each colour gives us the greatest flexibility in attempting
to create an optimal classification for each colour. By apply-
ing a simple priority system to colours (e.g. ball orange over
beacon pink) potential overlaps are avoided.

The SVM can be used in two situations during the colour
classification procedure. Firstly during the construction of a
new LUT where it can be applied to increase the speed of
classification.

By loweringγ while the number of training points is low,
a rough estimation of the final shape can be obtained. By
continuing the manual classification and increasingγ a closer
approximation to the area containing the training data is ob-
tained (Figure 4). In this manner a continually improving
LUT can be constructed until it is deemed adequate.

An extreme example of this application is during the set-up
phase at a competition. In the past when we arrived at a new
venueall system testing was delayed until the generation of a
LUT. Of critical importance is testing the locomotion engine
on the new carpet and in particular ball chasing. The task of
ball chasing relies on the classification of ball orange. Thus a
method of quickly but roughly classifying orange is valuable.
By manually classifying a few images of the ball and then
training the SVM withγ < 0, a sphere containing all possible
values for the ball is generated.

The second situation in which we use the one-class SVM
is on a completed LUT. Either all colours in the table can be
trained (i.e. updating of an old table) or an individual colour
is trained due to an initial classification error. This procedure
can be performed either on the robot or a remote computer.

Results
First an individual LUT was generated for each image in a
test set. Each of these LUTs is designed to provide a near
optimal result for its corresponding image. This provides us
with a reference so we can compare LUTs for a measure of
accuracy.

The LUTs were compared over 60 images, which equates
to 1520640 individual pixel comparisons.

Lookup Table Errors % Error
Hand generated 144098 9.48

ν=0.025 andγ=10 153060 10.07
ν=0.025 andγ=250 117652 7.74
ν=0.025 andγ=500 126840 8.34
ν=0.025 andγ=1000 135778 8.93

Experimental results indicate thatν = 0.025 andγ = 250
provide excellent results on a previously constructed LUT.

An example image can be seen in Figure 5. The most ev-
ident change can be seen in the classification of the colour
white due to a 250% increase in white entries in the LUT.

Collision Detection
For collision detection the one-class SVM is employed as a
novelty detection mechanism[Marsland, 2003]. In our im-
plementation each training point is a vector containing thir-
teen elements. These include five walk parameters,stepFre-
quency, backStrideLength, turn, strafe and timeParameter
along with a sensor reading from the abductor and rotator
joints on each of the four legs. Upon training the SVMs de-
cision function will return +1 for all values that relate to a
“normal” step, and -1 for all steps that contain a fault.

Speed is of the greatest importance in the RoboCup do-
main. For this reason a collision detection system must at-
tempt to minimise the generation of false-positives (detect-
ing a collision that we deemed not to have happened) while
still finding a high percentage of actual collisions. Low false-
positives are achieved by keeping the kernel parameterγ high
but this has the side effect of lowering the generalisation to
the data set, which results in the need for an increased num-
ber of training points. In a real world robotic system the need
for more training points greatly increases the training time
and in-turn the wear on the machinery.

The previous method, described in[Quinlanet al., 2003],
for collision detection involves observing a joint position sub-
stantially differing from its expected value. In our case an
empirical study found two standard deviations to be a practi-
cal measure, see Figure 6. Initially we would have considered
a collision to have occurred if a single error is found, but fur-
ther investigation has shown that finding multiple errors (in

4



Figure 4: Colour Classification: A) Points manually classified at white. B) Ellipsoid fitted to these white points. C) Result of
the one-class SVM technique,ν=0.025 andγ=10. D) Result of the one-class SVM technique,ν=0.025 andγ=250.

Figure 5: Image Comparison: The left image is classified with the original LUT and the image on the right is the using the
updated LUT. Black indicates a pixel that has been classified as unknown.

most cases three) in quick succession is necessary to warrant
a warning that can be acted upon by the robot’s behaviour
system.

One drawback of this method is that it relied on domain
knowledge to arrive at two standard deviations. In addition it
required considerable storage space to hold the table of means
and standard deviations for each parameter combination.

The previous statistical method had the advantage of ex-
tremely low computational expense, in fact it was a table look

up. The trade-off is increased space, this method required
the allocation of approximately 6MB of memory during both
the training and detection stages. Conversely the SVM ap-
proach requires only about 1MB of memory during the de-
tection phase, but this comes at the side effect of increased
computation. Since the SVM approach was capable of run-
ning without reducing the frame rate, the extra memory could
now be used for other applications.

5



Figure 6: Rear Right Rotator for a forwards walking bound-
ary collision on both front legs, front right leg hitting first.
The bold line shows the path of a collided motion. The dotted
line represents the mean “normal” path of the joint (that is,
during unobstructed motion), with the error bars indicating
two standard deviations above and below.

Results

Results were gathered in a two step process. First was a test in
which the robot was placed in a situation where no collisions
would occur - this test was designed to find false positives
(detecting a collision that we deemed not to have happened).
In the second test we placed the robot directly in front of the
field boundary to test the success rate of detecting a collision.
It should be noted that there is a level of human interpreta-
tion (and therefore human error) in the gathering of data: The
output of the system is compared against what we perceived
to have occurred. Therefore if the system did not trigger an
expected fault this may be the result of an incorrect human
assumption.

For the detection of collisions while walking forwards, the
statistical method produced false positives in fewer than 1%
of steps. About 98% of collisions were detected. In terms of
accuracy the SVM approach slightly outperformed the origi-
nal statistical method for similar collisions.

3.2 Hill Climbing for Walk Parameter
Optimisation

The majority of teams in the legged league use some form
of omnidirectional parameterised walk based on the work of
[Hengstet al., 2002]. The end of each paw is commanded to
follow a trajectory with inverse kinematics used to calculate
the joint angles required to achieve the positions.

Commonly referred to as “PWalk” the original version fol-
lowed a rectangular trajectory and contained 8 parameters
that effect the stance of the robot and 4 parameters that con-
trol size and direction of each step. Our version has an ad-
ditional control parameter because we separated the forward
parameter into front and back stride lengths. The following is

a brief description of the 13 parameters in our system (front
and back are described together) -

Front/Back Height - Height of front/back hip above the
ground (mm)

Front/Back Sideways Offset - Distance measured from the
shoulder of the paw to the side (mm)

Front/Back Forward Offset - Distance of the paw from the
shoulder to the front (mm)

Front/Back Stride Height - The maximum height the paw
will be lifted of the ground (mm)

Step Frequency - Number of steps per second the robot will
take

Front/Back Stride Length - Length of step (mm)

Turn - The angle the robot should turn (counter clockwise)
during the step (degrees)

Strafe - Distance to the left the robot should move during the
step (mm)

The robot’s legs each follow a trajectory (or locus) in 3-
dimensional coordinate space. The current system only de-
fines a locus with vertical and forward components. The lo-
cus is rotated about the vertical axis to allow the robot to turn.
Various locus shapes have been tested, including rectangular,
elliptical and trapezoidal. Although the trapezoidal locus has
provided us with the best results in the past, it is not clear that
this shape is optimal. With this in mind, a system to easily
allow arbitrarily complex locus shapes has been developed.

For reasons of efficiency and flexibility, the algorithm for
defining and following an arbitrary locus is quite involved.
More precisely, the arbitrary locus must be deformable to al-
low the walk parameters to easily control the robot’s motion
and maintain the advantages of a highly parameterised mo-
tion engine. Additionally, there is only a very limited amount
of processor time available for locomotion, meaning that time
consuming operations can only be performed occasionally.

An arbitrary locus is defined by an arbitrary number of
‘critical points’ that, when joined together by straight lines,
represent the desired locus shape. The critical points need
not be a fixed distance apart. For a rectangular locus, the
critical points would be the four corners. Only the shape of
the locus is relevant, as its size is scaled later. We would ar-
gue that using straight lines is much less of a limitation than
it seems, as an arc can easily be represented by using several
points. Furthermore, there is little point in using spline curves
as the robot’s joint motors tend to smooth out the leg motion
anyway.

When a new set of walk parameters is received by the lo-
comotion engine, a number of steps must be performed in se-
quence to prepare an arbitrary locus for use. Firstly, the criti-
cal points must be deformed to account for walk parameters.
For example, the critical points may have to be stretched for
a large stride length, or compressed for a small stride height.

6



This is a simple matter of scaling the coordinates of the crit-
ical points so the shape they define is of the appropriate di-
mensions.

The next - and final - step before walking can commence is
interpolation. This task is performed prior to walking primar-
ily for reasons of efficiency. The algorithm linearly traverses
the deformed critical points and defines new points at (small)
fixed intervals. These evenly spaced points allow the walk
engine to efficiently control the timing of the locus traversal
when actually walking. Simply put, the walk engine must be
able to very efficiently calculate the exact position of each leg
in 3-dimensional space at any given time during a step.

Currently optimising the robots walk is done by hand ma-
nipulation of the parameters. The optimal parameter vector
will differ for each surface and each trajectory. Fixing prob-
lems (i.e. slip) may involve the change of one or all of the
parameters, thus the parameter space is too large to be cov-
ered by a human. The addition of an arbitrary locus serves to
further increase the size of the parameter vector.

Because we are dealing with a real world robot where each
episode may take up to 30 seconds we need a solution with a
steep learning curve.

Evolutionary Hill Climbing with Line Search
A version of Hill Climbing [Chalup and Maire, 1999] was
chosen because it can provide good results in parameter op-
timisation problems. We have chosen to use an Evolutionary
Hill Climbing with Line Search (EHCLS) algorithm, which
should provide a reasonably quick learning time.

The walk engine is determined by a vectorθ containing the
set of 11 walk parameters (turn and strafe are excluded from
the learning) and the critical points defining an arbitrary locus
shape. Each parameter is randomly set to an initial value; For
our task we make sure the initial vector is adequate (i.e. it is
capable of walking).

In our experiment one episode is to be defined as two runs
of approximately190cm each withtime being the number of
vision frames processed during the episode. Both the number
of runs and distance can be modified to suit the environment.
The exact distance travelled can’t be guaranteed as the robot
uses it own vision system to trigger the completion of a run.

Results
Initially we ran the experiment on each of the three static tra-
jectories - rectangular, ellipsoid and trapezoidal. With human
optimisations we have found that the original rectangular tra-
jectory was the slowest followed by the ellipsoid and then the
trapezoidal trajectory. In these experimentsθ only contained
the walk parameters (excluding strafe and turn) and therefore
had a size of 11.

The results show that EHCLS was capable of improving
on the best parameter set for each trajectory, again the trape-
zoidal was the fastest followed by ellipsoid and rectangular.
An example training exercise for a trapezoidal trajectory is
shown in Figure 7. The horizontal line indicates the initial

human derived time of 382 (24.87cm/s). Although this exam-
ple has a lowest time of 315 the parameter set that achieved
this time is unreliable. The lowest repeatable time for a trape-
zoidal trajectory is 327.69 with a standard deviation of 4.69
(28.99 cm/s± 0.4).

0 10 20 30 40 50 60 70
300

350

400

450

500

550

Episodes

Ti
m

e

Figure 7: Results of EHCLS with a trapezoidal locus. The
horizontal line indicates the initial human derived time of
382.

The second set of experiments involved learning both the
walk parameters and the critical points for an arbitrary locus
shape. We decided on 10 critical points (each critical point
consists of an x,y pair). With different sets of critical points
for the front and back legs we now have an additional 40 pa-
rameters to tune and thus aθ of size 51.

0 10 20 30 40 50 60 70 80 90
300

310

320

330

340

350

360

370

380

390

400

Episodes

Ti
m

e

Figure 8: Results of EHCLS with an arbitrary locus shape.
The horizontal line indicates the initial human derived time
of 382.

Results for training with arbitrary locus shape is shown in
Figure 8. The fastest repeatable time gained by the arbitrary
locus is 320.51 with a standard deviation of 8.01 (29.65 cm/s
± 0.7) with the locus shape shown in 9. It should be noted
that theθ that produced these results is a direct descendant of
theθ that produced the best trapezoidal time. Also the initial
critical points formed a trapezoid.

Figure 10 shows the result of learning when the initial crit-
ical locus was substantially different to a trapezoid. This ex-
ample resulted in a best time of 343 (27.70 cm/s). Further

7



Figure 9: Arbitrary Locus. The red(right) shows the locus
shape for the front legs. The blue(left) shows the locus
shape for the back legs.

experiments with different locus shape have been unable to
improve on the time set by the arbitrary locus shape derived
from a trapezoid.

0 5 10 15 20 25 30 35
300

320

340

360

380

400

420

Episodes

Ti
m

e

Figure 10: Results of EHCLS with an arbitrary locus shape.
The horizontal line indicates the initial human derived time
of 382.

An interesting observation is that multiple walks with
vastly different parameters sometimes have very similar
times. This indicates that many local minima exist inside the
search space, by examining the different “equivalent” combi-
nations it enables a greater understanding of how the param-
eters relate to each other.

4 Conclusion

In this paper we demonstrated how different learning tech-
niques can be applied successfully to a variety of tasks on the
limited hardware of the AIBO robot. Our use of both SVMs
and Hill Climbing show how learning can be applied to real
world robotic problems. Applying these techniques greatly
decreases the man power required to calibrate and optimise
many aspects of the robots’ performance.

Acknowledgments
We would like to thank Craig Murch for his extensive work on
both the vision and locomotion systems. In addition Christo-
pher Seysener, Jared Bunting and William McMahan for their
work on the vision system. We are grateful for financial sup-
port from the Faculty of Engineering and Built Environment
at the University of Newcastle.

References
[Boseret al., 1992] B. E. Boser, I. M. Guyon, and V. N. Vap-

nik. A training algorithm for optimal margin classifiers. In
D. Haussler, editor,Proceedings of the 5th Annual ACM
Workshop on Computational Learning Theory, pages 144–
152, Pittsburgh, PA, July 1992. ACM Press.

[Chalup and Maire, 1999] Stephan Chalup and Frederic.
Maire. A study on hill climbing algorithms for neural net-
work training. InProceeeding of the 1999 Congress on
Evolutionary Computation (CEC’99), pages 2014–2021,
1999.

[Chang and Lin, 2001] Chih-Chung Chang and Chih-
Jen Lin. LIBSVM: a library for support vec-
tor machines, 2001. Software available at
http://www.csie.ntu.edu.tw/˜ cjlin/libsvm.

[Cortes and Vapnik, 1995] C. Cortes and V. Vapnik. Support
vector networks.Machine Learning, 20:273 – 297, 1995.

[Hengstet al., 2002] B. Hengst, S.B. Pham, D. Ibbotson, and
C. Sammut. Omnidirectional locomotion for quadruped
robots.RoboCup 2001: Robot Soccer World Cup V, pages
368–373, 2002.

[Marsland, 2003] Stephen Marsland. Novelty detection in
learning systems.Neural Computing Surveys, 3:157–195,
2003.

[OPEN-R, 2003] Sony Entertainment Robot Company.
OPEN-R SDK web site, 2003. http://openr.aibo.com.

[Quinlanet al., 2003] Michael J. Quinlan, Craig L. Murch,
Richard H. Middleton, and Stephan K. Chalup. Traction
monitoring for collision detection with legged robots. In
RoboCup 2003 Symposium, 2003.

[Scḧolkopf et al., 2001] B. Scḧolkopf, J. C. Platt, J. Shawe-
Taylor, A. J. Smola, and R. C. Williamson. Estimating the
support of a high-dimensional distribution.Neural Com-
putation, 13:1443–1471, 2001.

[Shapiro and Stockman, 2001] Linda G. Shapiro and
George C. Stockman.Computer Vision. Prentice Hall,
2001.

[Vapnik and Lerner, 1963] V. Vapnik and A. Lerner. Pattern
recognition using generalized portrait method.Automation
and Remote Control, 24, 1963.

[Vapnik, 1979] V. Vapnik. Estimation of Dependences Based
on Empirical Data [in Russian]. Nauka, Moscow, 1979.
(English translation: Springer Verlag, New York, 1982).

[Vapnik, 1995] V. Vapnik. The Nature of Statistical Learning
Theory. Springer Verlag, New York, 1995.

[Vapnik, 1998] V. Vapnik. Statistical Learning Theory. Wi-
ley, New York, 1998.

8


