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Abstract— This study is part of a project which investigates
computational principles which underlie perception and re-
presentation of architectural streetscape character. Some of the
principles can be associated with fundamental concepts in brain
theory and Gestalt psychology. For the experimental analysis
streetscapes were represented by sequences of digital images of
house façades which were prepared by a team of researchers
from architecture. Two methods for non-linear dimensionality
reduction, isomap and maximum variance unfolding, were ap-
plied to a set of Hough arrays (for lines) of the given images. An
analysis of the extracted “streetmanifolds” revealed groupings
of house façades with similar visual character and proportions.
Comparative tests were conducted on a simple cylinder shaped
example manifold to evaluate the geometric stability of the two
dimensionality reduction methods. All experiments addressed
variations of the distance metric and the neighbourhood para-
meter.

I. BACKGROUND AND MOTIVATION

One of the tasks architects are facing in urban design is
determining aesthetic measures and guidelines, according to
which houses in a street are built, such that the resulting
streetscape is of appropriate visual complexity [16]. The aim
of this study was to show that a combination of line extraction
and manifold learning algorithms could find “architect-like”
representations of digital image data of house façades and
streetscapes in the form of a manifold. This may allow to
simulate procedures of the human visual system essential for
the aesthetic perception of architectural image data. Before
an experimental approach is proposed some background in-
formation is provided to support the hypothesis that manifold
learning can be applied in computer vision so that it parallels
concepts from visual neuroscience and Gestalt theory [29],
[47].

The visual cortex [20] is organised such that local signals
received at the retina are processed through a hierarchy of
layers into higher level representations which can be holistic,
abstract, and multimodal. Another fundamental principle of
the visual cortex is that it processes information in separate
streams which can be specialised on, for example, spatial
localisation, or form and object recognition.

Hubel and Wiesel [23], [24] discovered that so called simple
cells in the striate cortex (V1) of cats and monkeys respond to
oriented bars/edges in their receptive fields. Later it was found
that simple cells are not only sensitive to the orientation and
location of the bars but also to the spatial frequency of visual

stimuli [14]. The ability to report the direction of movement
is already available in retinal ganglion cells [2], [3], [33].

The perception and processing of line directions is a funda-
mental component of the brain’s visual information processing
system and regarded as essential for form recognition. Within
the striate cortex, functionally separate pathways have been
distinguished [32], [40]. Their corresponding neurons in V1
appeared to be associated with different categories of per-
ceptual processing, namely coding of motion and stereopsis,
coding of colour and contrast, and coding of form which is
based on orientation selective neurons [36, p.48].

Orientation-selective adaptation in the human V1 was sug-
gested in a study by Engel [17]. The results were supported by
Larsson et al.’s work [31] who also showed that second-order
stimulus orientation emerged through continued processing
after V1. This means that orientation selective processing is
a central concept of the human cortex and occurs in multiple
visual areas including V1, V2, and others [31].

Evidence that local features are integrated into global shapes
through processing in multiple visual areas comes from fMRI
studies in humans and monkeys [30].

Gestalt psychology [29], [47] addresses some corresponding
concepts and principles and argues, for example, that human
visual perception is holistic (“the whole is more than the
sum of its parts”). Several concepts found in modern visual
neuroscience were predicted by Gestalt theorists about 60-
80 years ago [48]. Gestalt theory assumes that the quality
of a perceptual configuration depends on factors such as
coherence, regularity, smooth continuity, unity, and simplicity.
This implies that visual perception prefers continuous over
broken or irregular transitions and there should be neurons
sensitive to collinearity [41]. If a structure misses parts or is
disturbed by noise, it is proposed the visual system tries to fill
the gaps or to filter out noise. Similarity based grouping can
occur driven by various features such as colour, texture, size,
and shape [28], [34].

In architecture, the perception of lines, in particular the
perception of horizontal and vertical lines, plays a dominant
role in the visual evaluation of house façades and streetscapes.
Therefore it should represent a significant component of the
experience learned by an architect required for judging the
aesthetic aspects of streetscapes.

Our hypothesis was based on the assumption that simulated
processing in the form stream of the visual hierarchy, when
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Fig. 1. Cylinder shaped 2-dimensional manifold extracted from a 56,064-dimensional space of colour pixel. The data set consisted of 490 images taken of
a shackle while it was rotated about 360o (in 49 steps) and translated sideways (in 9 steps) on a red backgound. The distance of translation is indicated as a
black gap on the left and right side of each of the images for illustrative purposes. The large cylinder at the top was obtained using isomap with k = 4 and
the standard Euclidean distance. Manifolds obtained using isomap with k = 6, 8 and MVU with k = 4, 6 are displayed in the bottom row.

applied to the images of a streetscape, should lead to a
holistic representation of the combined information of the
edge/line distributions extracted from all the house images in
the data set. Following the suggestions from Gestalt theory
the resulting representation should be a holistic, continuously
connected object, such as a non-linear manifold. The latter will
be called a “streetmanifold” within the context of this study.

Manifolds are locally Euclidean spaces with some other
very general mathematical properties [42]. Visually, within
dimensions 1 and 2 they can be seen as continuous, non-linear
deformations of lines, circles, spheres, tori, pretzel surfaces,
or similar objects.

Manifold learning describes a family of algorithms for
non-linear dimensionality reduction [7]. Their purpose is to

detect the essential underlying geometric structure of high-
dimensional data sets and to extract it as a low-dimensional
manifold. A simple and predictable example is shown in
Figure 1 where a 2-dimensional cylinder embedded in R3

was extracted from a (192×292)-dimensional space of colour
pixels. This example will be explained in more detail in
Section II-C.

Previous publications which were related to the task of
finding representations of the environment through manifold
learning include, for example, Seung and Lee’s [38] article on
perception, Ham and Lee’s work on robot localisation [21],
and a paper by Peters and Jenkins [35] on robot sensor space
representation.

The main steps of the approach taken in this study were:



1) Image data collection.
2) Application of a Hough transform for lines including

appropriate parameter tuning.
3) Calculation of distances between Hough arrays.
4) Application of manifold learning.
5) Embedding of the manifold of Hough arrays into 2- or

3-dimensional space.
The remainder of this article is structured as follows. Section II
describes two methods for non-linear dimensionality reduc-
tion, isomap and maximum variance unfolding, which were
applied in this study and evaluates their geometric stability on
a simple example. Section III briefly addresses the streetscape
image data. In Section IV the Hough transform and the Hough
arrays are described. The experiments on the streetscape data
and the results are described and discussed in Section V.
Section VI is the conclusion.

II. MANIFOLD LEARNING

In dimensionality reduction tasks we have data vectors xi ∈
Rd, i = 1, ..., n in a high-dimensional space. The aim is to
find a mapping

Rd −→ Rr (1)
xi 7→ yi

for all i = 1, ..., n such that r < d and the new lower di-
mensional representation of the data still contains all essential
structure and information.

Traditional methods for dimensionality reduction such as
principal component analysis [26] or multidimensional scaling
(MDS) [12] were able to reduce high-dimensional data to
linear subsets. Recently developed methods for non-linear
dimensionality reduction can extract non-linear submanifolds
from high-dimensional data.

The first of a series of publications on new algorithms for
non-linear dimensionality reduction were published in 2000
on the algorithms Isomap [43] and Locally Linear Embed-
dings (LLE) [37]. Since then a large number of variations,
improvements and new algorithms followed such as Laplacian
Eigenmaps [4], Local Tangent Space Alignment (LTSA) [49],
and Maximum Variance Unfolding (MVU) [45], [46]. Two of
them, isomap and MVU, have been employed in the present
study to calculate streetmanifolds.

A. Isometric Feature Mapping

Isometric Feature Mapping (Isomap) [43] is a manifold
learning method which can be seen as an extension of metric
MDS [12] where instead of pairwise Euclidean distances ap-
proximate geodesic distances are used. In contrast to Euclidean
distances which are measured straight through the surrounding
space Rd geodesic distances can be longer because they are
measured along (shortest) arcs within the manifold using its
intrinsic metric.

Let {x1, ..., xn} be a given set of data points xi ∈ Rd,
i = 1, ..., n which are assumed to be sampled from a low-
dimensional manifold M which is embedded in the high-

dimensional input space Rd. The basic version of Isomap can
then be explained in three steps [43]:

1) Select a neighbourhood parameter k ∈ N and construct
a neighbourhood graph G where each point of the
manifold is connected only to its k nearest neighbours.
Weight existing connections between two neighbouring
vertices xp, xq ∈ G by their Euclidean distance ‖xp −
xq‖2 in Rd.

2) Generate a distance matrix D = (dij)i,j=1,...,n where
each coefficient dij is the shortest path distance in G
between each pair of the initially given sample points
xi, xj ∈ Rd, i, j = 1, ..., n. The shortest paths in G
can be calculated, for example, by Dijkstra’s algorithm
[11], [15]. The idea is that the path-length dij is an
approximation of the geodesic distance between each
pair of points xi, xj ∈M, i, j = 1, ..., n.

3) Apply MDS using the dij , i, j = 1, ..., n as inputs.

Fig. 2. Bottom: Example of a Hough array where line intensities are plotted
as heights in z-direction above the corresponding (Angle, Distance)-
point (Angle is here the angle of a line’s normal vector). Dominant entries
can clearly be identified at points corresponding to horizontal and vertical
lines. Note that in the displayed image each value in the original array
was multiplied with a Gaussian function to increase radial spread. Top: The
corresponding image of a house. The superimposed lines were obtained using
an inverse Hough transform.



B. Maximum Variance Unfolding

Maximum variance unfolding (MVU) [45], [46] starts simi-
larly to isomap from a weighted k-nearest neighbour graph.
Then MVU aims to maximise the sum of pairwise distances
of all data points, i.e.∑

ij

(
‖yi − yj‖2 · δNN (xi, xj)

)
(2)

where δNN (xi, xj) is 1 if xi and xj are nearest neighbours and
0 otherwise; The maximisation is subject to two conditions

(I) ‖yi − yj‖2 = ‖xi − xj‖2

(II)
∑

i

yi = 0

which postulate that: (I) distances between nearest neighbour
inputs should be the same as between the associated outputs
and (II) the outputs should be centered at the origin.

As explained in more detail by Weinberger [45], [46]
the above (non-convex) constraint optimisation task can be
reformulated as a semidefinite program [44] over the matrix
K = (Kij) i=1,...,m

j=1,...,n
where Kij = yi · yj . With the additional

condition that K should be positive semidefinite this becomes
a convex task.

Fig. 3. The residual variance calculated by isomap [43] for the embedding
based on the Euclidean distance matrix is higher than that for the Bhat-
tacharyya measure based distance matrix.

C. The Cylinder Example

A digital image is a pixel array, that is, it can be represented
by a vector in a d-dimensional space where d is the number
of pixels of the image [5]. Hence a set of digital images
can be seen as a point set in a d-dimensional vector space
(more precisely it is a (3 × d)-dimensional space because
every RGB colour pixel consists of three values). If the set
of images together describes a particular configuration or
dynamics, of an object or agent, then manifold learning could
theoretically be used to extract the essential structure of this
configuration in the form of a low-dimensional manifold. For
example, if the set of images describes an object moving along

a one-dimensional line then manifold learning would extract
a one-dimensional line as the essential implicit geometric
configuration that best captures the dynamics described by the
set of images. If the object was rotated the algorithm should
extract a circle. And if the object was rotated and translated
at the same time the outcome should be a cylinder which was
demonstrated by the experiments with the images of a shackle
in Figure 1.

Experiments with isomap were conducted for k = 4, 6, and
8. For k = 4 the result was a very well-ordered cylinder
(large top image in Figure 1). For k = 6 isomap exhibited
a wave pattern which previously was reported as a typical
feature of isomap when applied to a rotating object task such
as the teapot in Weinberger and Saul (2006) [46]. The wave
pattern seemed to disappear when k was increased from 6
to 8 and the cylinder eventually collapsed when the k value
that was selected was too large. The same experiments with
MVU led to very similar outcomes. The points of the resulting
MVU manifolds were slightly less evenly distributed than
those obtained with isomap. For k = 6 the wave pattern was
less clearly expressed than with isomap. We also repeated all
experiments using a Bhattacharyya similarity based distance.
The outcomes were almost identical to those obtained using
the Euclidean distance.

III. THE STREETSCAPE IMAGE DATA

The data for this study consisted of several hundred digital
images of houses and streetscapes from selected areas in
Newcastle. Due to space restrictions only a small number of
examples can be displayed in the present paper to explain the
experimental outcomes. The smallest image was 300 × 300
pixels and the largest image resolution was 3000× 1500.

IV. THE SPACE OF HOUGH ARRAYS

The Hough transform (HT) for lines is a well established
image processing method [22], [25], [39], [19], [18]. It takes
a global view at an image of an architectural scene and can
determine edge directions or lines including broken or virtual
lines. These could be the roof of a house or a virtual horizontal
line as a result of connecting horizontal components which
are part of a row of several parked cars. Many variations and
generalisations of the Hough transform for lines have been
developed [1], [13], [8], [25].

A. Basic Hough Transform

Geometrically a line can be seen as a set of points x =
(x1, x2) in a two dimensional space of real numbers R2. It
can be determined by using the Hessian Normal Form

{ x ∈ R2 ; [cos ϕ, sinϕ] · x− b = 0 } (3)

where ϕ ∈ [0, 360o[ determines the slope of the line’s normal
vector and b ∈ R is its perpendicular distance from the origin.

The Hough transform [22], [25], [39] for lines associates
each image with an array of discrete parameters (ϕ, b) ∈
[0, 360o[×R which is called the Hough array.



Fig. 4. Selection of example images of house façades. The red lines were extracted with a Hough transform for lines. In the above images the number of
displayed lines was limited to 60 where the strongest 20 lines were plotted thicker.

For each pixel and its neighbourhood in the original image
the Hough transform examines whether a gradient for a
potential line passing through that pixel can be estimated.
It calculates the parameters ϕ and b for the potential line
and stores them in the associated Hough array. For each
gradient belonging to a particular line in the original image the
corresponding entry in the Hough array is incremented. This
is one of many possible variations of the Hough transform and
is described in the book by Shapiro and Stockman [39].

B. Threshold Selection

The decision how many lines are detected and which direc-
tions are selected depends on at least two threshold parameters
which had to be decided. The first parameter λ is a lower
bound for the length of the gradients that should be considered
as contributions to a particular line as an entry in the Hough
array (either binary or as real value). The second parameter µ
is a lower bound on the value of the coefficients of the Hough
array. The size of the coefficients in the Hough array determine
the ‘strength’ of a corresponding line. The parameter µ cuts
out the weak lines. Those lines having support of only a few

pixels with gradients in their direction should not be counted
as lines. For the present study λ and µ were set to fixed values
which were determined in a series of pilot experiments.

C. Distances Between Hough Arrays

For the application of isomap and MVU in the space of
Hough arrays the distances between each pair of Hough arrays
had to be calculated. Given two (m × n)-dimensional arrays
A = (aij) i=1,...,m

j=1,...,n
and B = (bij) i=1,...,m

j=1,...,n
their Euclidean

distance can be calculated using

d2(A,B) =
√√√√ ∑

i=1,...,m
j=1,...,n

(aij − bij)
2
. (4)

Alternatively a distance based on the Bhattacharyya distance
measure [6], [27] can be applied after normalisation of the
arrays as follows

dBhat(A,B) = 1−
∑

i=1,...,m
j=1,...,n

√
aij

√
bij . (5)



Point-wise calculation of the distances for sparse arrays would
not lead to a meaningful result. Therefore the discrete set of
point values was smoothened by multiplying each point in
the array with a Gaussian function. This lead to a continuous
surface as shown in Figure 2 which was used as basis for the
calculation of the distance matrices.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The experiments with the cylinder data in Section II-C and
Figure 1 demonstrated that it is possible to generate topologi-
cally and geometrically stable manifolds if the neigbourhood
parameter k and the dimension of the embedding are well
selected. In the cylinder example a choice of 4 ≤ k ≤ 8 and
an embedding into R3 produced satisfying results.

For the streetmanifold, although the resulting shape was not
known in advance, the outcome with respect to stability was
similar: The resulting manifolds did not change much if the
neighbourhood parameter was selected within the range 5 ≤
k ≤ 10. Therefore all final results were calculated with k = 5.

Four streetmanifolds were generated. Two of them used a
Euclidean distance matrix and two of them a distance matrix
based on the Bhattacharyya similarity measure. Each of the
distance matrices was processed with isomap and MVU. The
two resulting streetmanifolds obtained with isomap have been
included in this paper and are displayed in Figure 5. The two
MVU streetmanifolds were very similar to the corresponding
isomap results and were not included.

The manifolds were best embedded in 3-dimensions and
therefore a colour/greyscale gradient for coding the 3rd di-
mension was applied to the images of the two manifolds in
Figure 5. The residual variance [43] of the Bhattacharyya
measure based manifold turned out to be lower than that of the
Euclidean distance based manifold (cf. Figure 3) and allowed
an embedding into two dimensions in our example.

For our analysis of the streetmanifolds six categories of
similar houses were identified in the Bhattacharyya measure
based manifold in Figure 5. For display we selected four
representative houses from each of the six categories and
included them in Figure 4. A comparison with the streetmani-
folds in Figure 5 revealed that the four houses from each cate-
gory appeared as clusterstyle groups in both streetmanifolds.

The houses of category A were relatively narrow, had a
relatively high percentage of vertical lines and not many
diagonal lines. The houses of category B were wide, had strong
horizontal components but also many vertical lines and some
diagonal lines. The A and B “clusters” were well separated
and could be identified in both manifolds.

The E category was special because its houses were hidden
behind trees. The distribution of horizontal and vertical lines
tended to be homogeneous and did not have very strong
lines. The associated group of points in the manifold could
be characterised as “undecided” and was located at a close to
central position.

Categories C, D, and F were very similar. In D the distri-
bution of horizontal lines was more homogeneous than in C

and F and it included strong lines. F seemed to have slightly
more vertical and diagonal lines than C.

D and E could be regarded as transitional stages between
A and B. Similarly F seemed to play the role of a transition
between C and D which becomes more plausible if the 3rd
dimension’s colour/grayscale map is taken into account.

The results suggest that the streetmanifolds have captured
and smoothly organised a variety of line based features of the
data set. Isomap and MVU produced very similar outcomes.
The manifolds using the Euclidean distance had a different
geometry from the Bhattacharyya measure based manifolds.
However, relative location of the selected test groups of houses
were closely related. The difference of the geometries of
the two manifolds is at least partially a consequence of the
array normalisation which was conducted in connection with
the calculation of the Bhattacharyya measure based distance
matrix.

Future development of the presented approach and pilot
experiments may involve other features such as texture, line
segments and colour in addition to the lines. Image preprocess-
ing may be applied such as cropping cars, trees, clouds, and
compensation for shadows. There are a number of variations
for the Hough transform and different parameter settings which
could be evaluated in further detail. These may lead to slightly
different results and could be used to emphasize or augment
particular features such as the size of the houses, fine texture,
and how similarity between lines is displayed. In the present
study the origin of the Hough transform was placed at the
midpoint of each image. However, it was proposed that for
architectural analysis it may be better to put the origin centered
at eye-height at the entrance door of each house.

The principles of visual neuroscience and Gestalt psycho-
logy discussed in the introduction can be used as basis for
an interpretation of the process of generating the streetmani-
folds: The extraction of local gradients in the digital image
and identification of lines from incomplete local information
(Hough transform for lines), can be interpreted as a form
of hierarchical information processing, which achieves what
Gestalt psychology would associate with principles of holism
and continuity. The accumulation and nearby location of
similar lines in the Hough arrays, and the distance based
comparison of Hough arrays, may be interpreted as instances
of functional specialisation (orientation selectivity) and would
be associated with Gestalt principles such as similarity and co-
herence. Therefore the establishment of the streetmanifold as
abstract, continuous, holistic representation of the streetscapes’
visual information (the component based on lines), combines
both of the two main principles of human visual information
processing and associated Gestalt principles.

VI. CONCLUSION

Isomap and MVU were applied to architectural image data
which is a novel application of non-linear dimensionality re-
duction [9]. Parallels of the procedure with principles in vision
science were discussed. The experiments included comparative
evaluations of MVU, isomap, different distance measures, and



Fig. 5. Isomap streetmanifolds based on Euclidean (top) and Bhattacharyya (bottom) distance calculation.



variations of the critical neighbourhood parameter k. The main
contribution was a proof of concept of the streetmanifold. Its
analysis unveiled a rich structure of line related visual features.
The discussion of the present article addressed some basic
aspects of this structure which appeared to be meaningfully
represented in the streetmanifold. The geometric stability of
the cylinder example (Figure 1) contributed to this conclusion.
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